

DEPARTMENT OF BOTANY

SYLLABUS FOR B.Sc BOTANY UNDER CHOICE BASED CREDIT SYSTEM (CBCS) FOR CANDIDATES ADMITTED FOR THE ACADEMIC YEAR OF 2019 -2020

Bishop Heber College (Autonomous)

(Nationally Reaccredited at the A Grade by NAAC with CGPA 3.58/4) (Recognized by UGC as "College of Excellence") (Affiliated to Bharathidasan University, Tiruchirappalli) Tiruchirappalli- 620 017.

Program Outcomes –B.Sc - BOTANY

On Successful completion of the Program the under grandaunt of Botany will be able to,

Knowledge

- **PO1-** Comprehend Knowledge on Basic concepts, development and application aspects of Plant Science.
- **PO2-** Interpret the scientific classifications for better understanding, conservation and identifying plants around us.
- **PO3-** Discuss the importance of plants in the modern life science, aero science and energy needs of humans. Graduate will reiterate the plants as core essentials to maintain the life on earth.

Skills

- **PO4-** Make use hands on experience in fundamental botany, advanced biotechnological methods, *in vitro* studies to promote new variants in crop plants and for environmental improvement.
- **PO5** Analyse the plant-microbial-animal and environmental interactions for sustainable development.
- **PO6-** Evaluate the potentialities of green wealth by incorporating other branches of science to utilize it for the society.

Attitudes

PO7- Develop technical skills in expression, team work, Informatics, and report botanical values of plants through lifelong investigation and dissemination of learning.

Ethical and social values

PO8- Formulate new plant varieties, evaluate the plant resources for the welfare of human life, report on the genetic engineering, bio-war, bioethics in designing experiments and maintain the proper functioning of the natural ecosystem.

PO9- Defend ethical and socio-ecological values of nature and appraise the significance of plants in the wellbeing of environment.

Program Specific Outcomes

Knowledge & Skills

- **PSO1 -** Analyse the theories in Plant science, development of plants, their adaptations and strategy for conservation and interaction of plants to the abiotic components and nutrient cycling in the environment.
- **PSO2-** Classify the plants scientifically, attain knowledge on the systematics, evolution of plants from lower to higher forms and their interrelationships and the economic importance of various plants and plant- based traditional drugs.
- **PSO3-** Interpret the scope of plant biodiversity Algae, Fungi, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms, their Physiological process (photosynthesis, respiration, multiplication, environmental responses), ecological, biochemical, cytological and molecular interactions on plants.
- **PSO4-**Evaluate the phytochemicals and develop skills on nursery management, herbarium development, handling microscopes, sketching the anatomical structures of plants. Execute the facts of plant growth, their physiological-hormonal and enzymatic actions in the growth and development of plant.

B. Sc BOTANY- 2019 ARTICULATION MATRIX

COURSE TITLE	COURSE CODE	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
Angiosperm Morphology and Taxonomy	U16BY101	Н	Н	L	L	М	L	-	L	L	Н	Н	М	Н
Major Practical - I	U16BY1P1	М	Н	L	L	М	L	L	L	L	Н	Н	L	М
Plant Anatomy and Embryology	U16BY202	М	М	Н	L	L	L	L	L	-	Н	Н	L	L
Major Practical - II	U16BY2P2	М	М	Н	L	L	L	L	L	L	Н	Н	L	L
Plant Diversity - I (Thallophytes and Bryophytes)	U16BY303	Н	Н	М	L	L	L	М	-	-	Н	Н	L	L
Plant Diversity II (Pteridophytes, Gymnosperms and Paleobotany)	U16BY404	Н	Н	Н	Н	Н	М	М	L	L	Н	Н	М	Н
Major Practical - III	U19BY4P3	Н	Н	L	L	Н	Н	М	М	М	Н	Н	М	L
Major Practical - IV	U16BY4P4	Н	Н	L	-	L	-	М	-	-	Н	М	L	L
Plant Physiology, Biochemistry and Biophysics	U16BY505	Н	М	М	Н	Н	Н	Н	L	L	Н	Н	L	L
Cell Biology, Genetics and Evolution	U16BY506	М	М	Н	Н	Н	Н	М	L	L	Н	Н	L	М
Major Practical - V	U16BY5P5	М	М	М	М	М	М	М	М	L	Н	Н	L	L
Biostatistics, Computer Applications and Bioinformatics	U16BY5:1	М	М	L	L	L	L	М	L	L	Н	Н	L	L
Mushroom and Nursery Technology	U16BYPS1	М	L	L	L	L	L	-	-	-	М	М	-	L
General Geology, Ecology and Phytogeography	U16BY607	Н	Н	L	L	L	L	L	L	-	Н	Н	L	L

General Microbiology	U16BY608	М	М	М	Н	Н	Н	L	М	М	Н	Н	Н	Н
Major Practical - VI	U16BY6P6	Н	М	L	Н	L	М	L	-	-	Н	Н	L	L
Plant Breeding, Pathology,							-	М	Н	Н	М	Н	М	М
Protection and Organic Farming	U16BY6:1	М	М	М	М	-								
Molecular							Н	Н	Н	Н	Н	Н	М	М
Plant Biotechnology	U16BY6:2	М	L	М	Н	Н								
Molecular and							н	н	н	н	М	М	н	н
Plant Tissue culture Techniques	U16BYPS2	М	L	Н	Н	Н					171	171	11	
Plant Wealth for Human Life	U16BYPS3	L	L	-	-	-	-	-	-	-	L	-	-	-

B. Sc BOTANY COURSE STRUCTURE- 2019

Se m.	Pa rt	Course	Course Title	Course Code	Hou rs / wee k	Cre dits	Ma rks	Se m.	Pa rt
	Ι	Tamil I /*	செய்யுள், இலக்கிய வரலாறு, உரைநடை, மொழிப்பயிற்சியும் படைப்பாக்கமும்	U18TM 1L1	6	3	25	75	10 0
	II	English I	English Communication and Soft Skills – I	U16EG 1L1	6	3	25	75	10 0
		Core I	Angiosperm Morphology and Taxonomy	U16BY 101	6	6	25	75	10 0
T		Core Prac. I	Major Practical – I	U16BY 1P1	3	2	40	60	10 0
-	III	Allied I	Biology of Invertebrates and Chordates	U19ZY Y11	4	3	25	75	10 0
		Allied Prac. I	Biology of Invertebrates, Chordates, Human Physiology and Economic Zoology	U19ZY YP1	3				
	IV	Val. Edu.	Value Education (RI/MI)	U15VL 1:1/ U15VL 1:2	2	2	25	75	10 0
	Ι	Tamil II /*	செய்யுள், இலக்கிய வரலாறு, சிறுகதைத் திரட்டு, மொழிப்பயிற்சி மற்றும் படைப்பாக்கமும்	U18TM 2L2	6	3	25	75	10 0
	II	English II	English Communication and Soft Skills – II	U16EG PL2	6	3	40	60	10 0
		Core II	Plant Anatomy and Embryology of Angiosperms	U16BY 202	6	6	25	75	10 0
Π		Core Prac. II	Major Practical – II	U16BY 2P2	3	2	40	60	10 0
	III	Allied II	Human Physiology and Economic Zoology	U19ZY Y22	4	4	25	75	10 0
		Allied Prac. I	Biology of Invertebrates, Chordates, Human Physiology and Economic Zoology	U19ZY YP1	3	3	40	60	10 0
	IV	Env. Studies	Environmental Studies	U16ES T21	2	2	25	75	10 0
ш	Ι	Tamil III /*	செய்யுள்- காப்பியங்கள், இலக்கிய வரலாறு, நாவல், மொழிப்பயிற்சி	U18TM 3L3	6	3	25	75	10 0
	II	English III	English for Competitive Examinations	U16EG PL3	6	3	25	75	10 0
* Ot	her L	anguages :Hin	di Sanskrit French	Hindi			Sans	krit	

French

1	Core III	Plant Diversity - I (Thallophytes and	U16BY	6	6	25	75	10
		Bryophytes)	303	0	0	23	15	0
III	Allied III	Allied Chemistry – I	U19CH Y33	4	4	25	75	10 0
	Allied Prac. II	Volumetric and Organic Analysis	U19CH YP2	3				
I V	NMEC I	Nursery Technology	U16BY PE1	2	2	40	60	10 0
I	Tamil IV /*	செய்யுள்(மேற்கணக்கு,கீழ்கணக்கு), இலக்கிய வரலாறு , நாடகம், மொழிப்பயிற்சி	U18TM 4I 4	5	3	25	75	10 0
II	English IV	English through Literature	U16EG PL4	5	3	25	75	10 0
	Core IV	Plant Diversity - II (Pteridophytes, Gymnosperms and Palaeobotany)	U16BY 404	6	5	25	75	10 0
	Core Prac.	Major Practical III (Covid 19)	U19BY 4P3	3	2	40	60	10 0
III	Core Prac.	Major Practical – IV	U16BY 4P4	3	2	40	60	10 0
v	Allied IV	Chemistry for Life Sciences	U19CH Y44	4	4	25	75	10 0
	Allied Prac. II	Volumetric and Organic Analysis	U19CH YP2	3	3	40	60	10 0
I	NMEC II	Mushroom Cultivation	U16BY PE2	2	2	40	60	10 0
V	Soft Skills	Life Skills	U16LF S41	2	1	-	-	10 0
V	Extension Activities	NSS, NCC, Rotaract, Leo Club, Etc.	U16ET A41	-	1	-	-	-
	Core V	Plant Physiology, Biochemistry and Biophysics	U16BY 505	7	6	25	75	10 0
	Core VI	Cell Biology, Genetics and Evolution	U16BY 506	7	6	25	75	10 0
ш	Core Prac. V	Major Practical V	U16BY 5P5	3	2	40	60	10 0
	Core Project	Project	U16BY 5PJ	5	5	25	75	10 0
	Elective I	Biostatistics, Computer Applications and Bioinformatics	U16BY 5:1	6	5	25	75	10 0
IV	SBEC I	Mushroom and Nursery Technology	U16BY PS1	2	2	40	60	10 0
	Core VII	General Geology, Ecology and Phytogeography	U16BY 607	6	6	25	75	10 0
	Core VIII	General Microbiology	U16BY 608	6	5	25	75	10 0
	Core Prac. VI	Major Practical VI	U16BY 6P6	3	2	40	60	10 0
VI	Elective II	Plant Breeding, Pathology, Protection and Organic Farming	U16BY 6:1	5	5	25	75	10 0
1	Electione III	Molecular biology and Plant	U16BY	5	5	25	75	10 0
	Elective III	Biotechnology	0:2					v

		SBEC III	Plant W	ealth for Human Life	U16BY PS3	2	2	40	60	10 0		
	v	Gender Studies	Gender	Studies	U16GS	-	1	-	-	10 0		
Semester II: U18HD2L2 U17SK2L2 U18FR2L2 Semester IV : U18HD4L4 U17SK4L4 U18FR4L4								L4				
												-
Part	$I \ : 4$	Core Theo	ory:8	Core Project : 1 All	lied Theory : 4	NN	AEC: 2		Env. S	tudies	5:1	Tatal
Part	II:4	Core Pra	ıc. : 6	Allied Prac.: 2	Elective : 3	SBE	C:3	Valu	ie Edu	cation	1:1	1 otal
Soft Skills : 1 Extension Activities : 1 Gender Studies : 1							. 42					

NMEC offered by the Department: 1. Nursery Technology - U16BYPE1 2. Mushroom Cultivation- U16BYPE2

ANGIOSPERM MORPHOLOGY AND TAXONOMY

Semester : I	Course Code : U16BY101
Credits : 6	Hours/Week: 6

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Distinguish and apply the morphological variation and modifications of the plant parts	K4	Ι
CO 2	Analyse the floral taxonomy of angiosperms	K4	II
CO 3	Apply the knowledge on identification of plants, its botanical nomenclature, herbariums and its importance	K3	III
CO 4	Apply the knowledge gained in studying the plants belonging to the Polypetalae, Gamopetalae, Monocot families with their economic importance	K3	IV
CO 5	Distinguish different families on their economic importance.	K4	V
CO 6	Identify the general characteristics, morphological variations and modifications of the plant	К3	I – V

SYLLABUS:

Unit I: Vegetative Morphology

1.0. Plant Morphology

1.1. Plant Habits

1.2. Root, Stem and its modification

1.3. Leaf structure- simple, compound; Phyllotaxy, venation and its modifications.

1.4. Inflorescence and types - Racemose and Cymose and special types- Racemose: simple, spike, spadix, catkin, corymb, umbel and head- Cymose: simple, monochasial –helicoids, scorpoid; Dichasial and Polychasium- Special types of Inflorescence: cyathium, verticillaster and Hypanthodium

Unit II: Floral Morphology

2.1 Floral morphology- Flower as a modified shoot, structure of flower.

2.2 Anthers- Types and arrangement

2.3 Aestivation, Floral diagram and floral formula

2.4 Gynoecium – types- Placentation

2.5 Classification of fruits- Simple: Fleshy - drupe, berry, Hesperidium-Fruits: Dry -

Dehiscent – legume, capsule; Indehiscent -Caryopsis, Cypsella- Schizocarpic – lomentum, carcerulus, regma, cremocarp with examples- Aggregate. Multiple: sorosis, syconus.

Unit III: Taxonomy

3.0 Importance of Taxonomy

3.1 Binomial nomenclature

3.2 Bentham and Hooker's classification, merits and demerits,

3.3 Hutchinson's classification – Merits and demerits.

3.3 Herbarium - importance and techniques.

Unit IV: Angiosperm Families

4.0 A detailed study of Angiosperm families with their economic importance.

4.1 Polypetalae

i) Annonaceae, ii) Capparidaceae, iii) Sterculiaceae, iv) Rutaceae, v) Fabaceae, vi) Caesalpineaceae, vii) Mimosaceae, viii) Cucurbitaceae, ix) Apiaceae.

Unit V:

(6 Hours)

5.0 Gamopetalae - i) Rubiaceae, ii) Asteraceae, iii) Apocynaceae iv) Asclepiadaceae, v) Solanaceae, vi) Lamiaceae, vii) Verbinaceae

5.1 Monochlamideae- i) Euphorbiaceae, ii) Amaranthaceae,

5.2 Monocotyledon - i) Orchidaceae, ii) Liliaceae iii) Poaceae.

Topics for self-study:

Self-study topics	References

(18 Hours)

(18 Hours)

(18 Hours)

(30 Hours)

General morphological characters of leaf	https://naldc.nal.usda.gov/download/CAT78702502/PDF https://www.sciencedirect.com/topics/earth-and-planetary- sciences/leaf-morphology
Plant Reproductive biology/ Pollination	https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438- 8677.2010.00414.x#:~:text=He%20concluded%20from%20his% 20observations,to%20attract%20insects%20for%20pollination. &text=Later%2C%20The%20Origin%20of%20Species,relation ship%20between%20flowers%20and%20pollinators.
Digital herbaria	http://dhcrop.bsmrau.net/
Kew botanical garden	https://www.kew.org/
Plant Databases	http://www.plantgdb.org/ http://www.plantphysiol.org/content/by/section/BIOINFORMA TICS-PLANT%20DATABASES
National botanical garden, Tamil nadu	https://nilgiris.nic.in/tourist-place/botanical-garden/

TEXT BOOKS:

Taxonomy

- Pandey, B.P. 1997. Taxonomy of Angiosperms. S. Chand & Co., (P) Ltd., New Delhi.
- Sharma, O.P. 2000. *Plant Taxonomy*. Tata McGraw Hill Publishing Co., New Delhi.
- Pandey, S.N and Misra, S.P. 2008. *Taxonomy of Angiosperms*. Ane Books India, New Delhi.
- Sharma, O. P, 1993. *Plant Taxonomy*. Tata Mc Graw Hill Publishing Co Ltd., New Delhi.

REFERENCE BOOKS:

- Lawrence GHM, 1951. Taxonomy of Vascular Plants, Oxford &IBH, New Delhi.
- Singh, G. 1999. *Plant Systematics: Theory and Practice*, Oxford & IBH, New Delhi.

Web Links:

https://nptel.ac.in/content/storage2/courses/122103039/pdf/mod1.pdf

SPECIFIC LEARNING OUTCOMES (SLO):

UNIT/ SECTI	CONTENT	LEARNING OUTCOME	HIGHEST BLOOM
ON			TAXONO MIC

			LEVEL
			OF
			TRANSA
			CTION
Ι	P	lant Morphology	
1.1	Plant Habits	Recall the Plant Habits	K1
		• Compare the various	K2
		habitats of Plants	K4
		• List out the systematic	
		characteristics of	
		angiosperm plants	
1.2	Root, Stem and its modification	• Classify the different	K2
		morphological variation of	
		• Explain the root stem and	KO.
		its modification	K2
000000	Phyllotaxy	Distinguish the leaf types	K4
000000			
00001.			
3			
1.3.1	Leaf structure- simple,	• Explain the leaf structure	K2
	compound venation and its	its modifications	
	modifications	• Interpret the adaptations	K2
14	Inflorescence and types -	Classify the Inflorescence	К2
1.1	Racemose and Cymose and	types	112
	special types		
1.4.1	Racemose : simple, spike,	• Distinguish between	K4
	spadix, catkin, corymb, umbel	Racemose inflorescence	
	and head		
1.4.2	Cymose: simple, monochasial –	Compare Cymose	K4
	helicoids, scorpoid; Dichasial	inflorescence	
	and Polychasial		
1.4.3	Special types of Inflorescence:	• Explain the special types	K2
	cyathium, verticillaster and	of Inflorescence	
	Hypanthodium		
II	F	oral Morphology	
2.1.1	Flower as a modified shoot,	• Explain the modified	K2
	structure of flower	shoot	K2
		• Classify structure of	
		tlower	

2.1.2	Types of flowers	• List out Types of flowers	K1				
2.2	Types of anthers and arrangement	• Classify the types of anthers and arrangement	K2				
2.3	Gynoecium – types Placentation	• Distinguish the Gynoecium and types of placentation	K4				
2.4	Aestivation Floral diagram and floral formula	 List out the arrangement of petals and sepals in a flower bud. Apply the floral formula is a system of representing the structure of a flower using specific letters, numbers and symbols 	K1 K3				
2.5	Classification of fruits Fruits: outline of the classification; Simple: Fleshy – drupe, berry, hesperidium, Dry – Dehiscent – legume, capsule; Indehiscent -Caryopsis, Cypsella, Schizocarpic – lomentum, carcerulus, regma, cremocarp, Aggregate. Multiple: sorosis, syconus	• Classify to fruit and types of fruits	К2				
III	Impo	ortance of Taxonomy					
3.0	Importance of Taxonomy	• List out the Importance of Taxonomy	K1				
3.1.1	Systems of Classification, Binomial nomenclature	• Apply the importance of Botanical nomenclature	K3				
3.1.2	Bentham and Hooker's classification, merits and demerits	• Explain the classification of Bentham and Hooker and others	K4				
3.1.3	Hutchinson's classification – Merits and demerits.	Outline the classification of Hutchinson's classification – Merits and demerits	K2				
11	Polypetalae						

4.1	Polypetalae:i)Annonaceae, ii)Capparidaceae,iii) Sterculiaceae, iv) Rutaceae,v) Fabaceae, vi)Caesalpineaceae, vii)Mimosaceae,viii) Cucurbitaceae, ix)Apiaceae.	 Illustrate the salient features of plants belonging to the families Annonaceae to Apiaceae Identify the characters of various plant families. 	K2 K3
V		Gamopetalae	
5.1	Gamopetalae: i) Rubiaceae, ii) Asteraceae, iii) Apocynaceae iv) Asclepiadaceae, v) Solanaceae, vi) Lamiaceae, vii) Verbinaceae	• Distinguish the plants belonging to Gamopetalae and apply the knowledge gained by studying families under Rubiaceae to Verbinaceae	K4
5.2	Monochlamideae : i) Euphorbiaceae, ii) Amaranthaceae	• Distinguish the plants belonging to the families	K4
5.3	Monocotyledon : i) Orchidaceae, ii) Liliaceae iii) Poaceae	 Distinguish the plants belonging to the families Apply the knowledge gained by studying the plants belonging to Monocotyledon 	K4 K3

Mapping Scheme for the Course Code: U16BY101

U16BY	PO	PSO	PSO	PSO	PSO								
101	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	H	Н	Μ	-	-	-	-	-	L	L	Н	L	L
CO2	Η	Н	-	-	-	-	-	-	Μ	L	Η	Μ	L
CO3	Η	Н	-	L	-	-	L		-	L	Η	Μ	Μ
CO4	Η	Н	-	Μ	-	-	-	-	-	L	Η	L	Μ
CO5	Η	Н	-	-	-	L	L	-	Μ	L	H	L	Μ
CO6	Η	Н	L	-	-	L	-	-	L	L	Η	L	Μ

L-Low M-Medium H-High COURSE ASSESSMENT METHODS: Direct Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

Herbarium, field book

End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICAL - I

Semester : I Credits : 2 Course Code : U16BY1P1 Hours/week. : 3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Identify the morphological variations and modifications of the plant	К3	Ι
CO 2	Analyse plant modifications based on ecological adaptation	K4	Ι
CO 3	Make use of the knowledge in identifying the plants belonging to the Polypetalae family.	K3	Π
CO 4	Distinguish the floral characters of different families belonging to the Gamopetalae	K4	Π
CO 5	Identify Monocotyledon plants by their characters	K3	II
CO 6	Explain the economic importance of plant and plant parts.	K2	III

Syllabus:

UNIT I- Morphological studies in Plants

(15 Hours)

1.1 Study of Root and its Modifications a) Tap root (*Acalypha*) b) Adventitious root (Grass) c) Storage roots – Conical (*Daucas*), Fusiform (*Raphanus*), Napiform (Beta) d) Stilt root (Maize/Pandanus) e) Aerial root (Pothos) f) Respiratory root (*Avicennia*)

1.2. Study of Stem and its Modifications a) Underground stem –Corm (Amorphophallus), Tuber (Potato), Bulb (Onion), Rhizome (Ginger) b) Sub aerial stem- Runner (Grass), Offset (Eichhornia). c) Aerial stem – Phylloclade (Opuntia), Cladode (Asparagus), Thorn (Bougainvilla), Stem tendril (Passiflora)

1.3. Study of Leaf and its diversity a) Types of leaf (Simple (Mango), Compound- Paripinnate (Tamarindus), Imparipinnate (Neem/Rose/Clitoria) b) Shape – Linear (Grass), Lanceolate (Nerium), Ovate (Hibiscus), Obcordate (Bauhinia), Elliptical (Guava) c) Venation – i) Reticulate- Unicostate (Ficus), Multicostate (Cucurbita) ii) Parallel- i) Unicostate/Pinnate (Canna), ii) Multicostate convergent (Bamboo/Grass) d) Phyllotaxy – i) Spiral (Hibiscus), ii) Opposite Decussate (Calotropis/Ixora), Opposite superimposed (Guava) iii) Ternate (Nerium) iv) Whorled (Alamanda) v) Radical (Aloe) vi) Leaf Mosaic (Acalypha) e) Modifications- i) Succulent leaf (Bryophyllum), ii) Reproductive leaf (Kalanchoe).

1.4. Study of Flower / Inflorescence a) Typical flower (Hibiscus / Datura), Inflorescence-i) Simple Receme (Tehprosia), Spike (Achyranthes), Corymb (Caesalpinia), Head/Capitulum (Tridax), ii) Cymose – Simple cyme (Jasmine), Monochasial Helicoid (Haemelia), Monochasialscorpoid (Heliotropium), Dichasial cyme (Ixora), Polychasial cyme (Nerium), iii) Special-Cyathium (Euphorbia), Thyrsus (Ocimum), Verticillaster (Leucas), Hypanthodium (Fig).

1.5. Study of Fruits & its Type a) Simple: i) Dry Dehiscent – Legume (Tephrosia), Follicle (Calotropis), Capsule (Ladies finger) ii) Dry Indehiscent – Cypsella (Tridax), iii) Splitting/Schizocarpic- Carcerulus (Ocimum) iii) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit).

UNIT II. Taxonomy

Taxonomy Study of various angiosperm families mentioned in the syllabus by using MLS of flower and study of floral whorls with floral formula and floral diagram.

UNIT III. Economic Importance in Plants

Binomials and Morphology of the useful parts of the Economic products belonging to the families studied.

Submission Field visit & report, preparation and submission of 20 bonafide Herbarium sheets with Field Note Book and Record should be submitted during the end semester practical examination.

(3 Hours)

(12 Hours)

Topics for self-study:

Self-study topics	References
Placentation	https://www.merriam-webster.com/dictionary/placentation
Plant Reproductive	https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-
biology/ Pollination	8677.2010.00414.x#:~:text=He%20concluded%20from%20his%
	20observations,to%20attract%20insects%20for%20pollination.
	&text=Later%2C%20The%20Origin%20of%20Species,relation
	ship%20between%20flowers%20and%20pollinators.
Digital herbaria	http://dhcrop.bsmrau.net/
Kew botanical garden	https://www.kew.org/

TEXT BOOKS:

- 1. Sharma, O.P, 2000. *Plant Taxonomy*. Tata McGraw Hill Publishing Co., New Delhi.
- 2. Ashok Bendre and Ashok Kumar, 1999. *Economic Botany*. Rastogi Publications, Meerut, India.

REFERENCE BOOK:

- 1. Dr. R. Satish Kumar, *Plant Taxonomy & Embryology (With Practical Manual)*. KNRN publications.
- 2. John C. Semple, 2016. Flowering Plants Laboratory Manual, Aster Graphics Publisher, ISBN: 978-0-9736087-2-4

Web Links:

https://www.acs.edu.au/courses/plant-taxonomy-833.aspx

SPECIFIC LEARNING OUTCOMES (SLO):

UNIT/			HIGHEST		
SECTI	CONTENT	LEARNING OUTCOME	BLOOM		
ON			TAXONO		
			MIC		
			LEVEL		
			OF		
			TRANSA		
			CTION		
Ι	Morphological studies in Plants				

1.1	Study of Root and its Modifications a) Tap root (Acalypha) b) Adventitious root (Grass) c) Storage roots – Conical (Daucas), Fusiform (Raphanus), Napiform (Beta) d) Stilt root (Maize/Pandanus) e) Aerial root (Pothos) f) Respiratory root (Avicennia)	 Define the root modifications by observing the parts. Explain the useful plant parts 	K2 K2
1.2	Study of Stem and its Modifications a) Underground stem –Corm (Amorphophallus), Tuber (Potato), Bulb (Onion), Rhizome (Ginger) b) Sub aerial stem- Runner (Grass), Offset (Eichhornia). c) Aerial stem – Phylloclade (Opuntia), Cladode (Asparagus), Thorn (Bougainvilla), Stem tendril (Passiflora)	 Explain the use for stem modifications and the parts adaptation Examine the ecological adaptation of plant modification 	K2 K4
1.3	Study of Leaf and its diversity a) Types of leaf (Simple (Mango), Compound- Paripinnate (Tamarindus), Imparipinnate (Neem/Rose/Clitoria) b) Shape – Linear (Grass), Lanceolate (Nerium), Ovate (Hibiscus), Obcordate (Bauhinia), Elliptical (Guava) c) Venation – i) Reticulate- Unicostate (Ficus), Multicostate (Cucurbita) ii) Parallel- i) Unicostate/Pinnate (Canna), ii) Multicostate convergent (Bamboo/Grass) d) Phyllotaxy – i) Spiral (Hibiscus), ii) Opposite Decussate (Calotropis/Ixora), Opposite superimposed (Guava) iii) Ternate (Nerium) iv) Whorled (Alamanda) v) Radical	 Define the leaf modifications in plants Explain the taxonomic principles for plant identification 	K2 K2

	(Aloe) vi) Leaf Mosaic		
	(Acalypha) e) Modifications- 1)		
	Succulent leaf (Bryophyllum),		
	11) Reproductive leaf		
	(Kalanchoe).		
1.4	a) Typical flower (Hibiscus /	• Make use of the flower types for plant	K3
	Datura), Inflorescence-i) Simple	identification	
	Receme (Tehprosia), Spike	• Tell the various types of	K1
	(Achyranthes), Corymb	flowers	
	(Caesalpinia), Head/Capitulum	• Analyze the flower	
	(Tridax), ii) Cymose – Simple	modification that favour	
	cyme (Jasmine), Monochasial	pollination	K4
	Helicoid (Haemelia),	1	
	Monochasialscorpoid		
	(Heliotropium), Dichasial cyme		
	(Ixora), Polychasial cyme		
	(Nerium), iii) Special-Cyathium		
	(Euphorbia), Thyrsus		
	(Ocimum), Verticillaster		
	(Leucas), Hypanthodium (Fig).		
1.5	Study of Fruits & its Type a)	• Examine the various fruit	K4
	Simple: i) Dry Dehiscent –	modifications	
	Legume (Tephrosia), Follicle	• Analyze the seed	K4
	(Calotropis), Capsule (Ladies	dehiscence mechanisms	
	finger) ii) Dry Indehiscent –	• Define the fruit types	
	Cypsella (Tridax), iii)		К2
	Splitting/Schizocarpic-		
	Carcerulus (Ocimum) 111)		
	Succulent – Pome (Apple),		
	Succulent – Pome (Apple), Berry (Brinjal), Hesperidium		
	Carcerulus (Ocimum) 111) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b)		
	Carcerulus (Ocimum) 111) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c)		
	Carcerulus (Ocimum) 111) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack		
	Carcerulus (Ocimum) 111) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit).		
II	Carcerulus (Ocimum) 111) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit).	Taxonomy	
II	Carcerulus (Ocimum) 111) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit). Taxonomy Study of various	• Analyze the plant groups	K4
II	Carcerulus (Ocimum) iii) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit). Taxonomy Study of various angiosperm families mentioned	• Analyze the plant groups on various groups	K4
II	Carcerulus (Ocimum) III) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit). Taxonomy Study of various angiosperm families mentioned in the syllabus by using MLS of	Taxonomy • Analyze the plant groups on various groups • Identify the plant category	K4 K3
II	Carcerulus (Ocimum) iii) Succulent – Pome (Apple), Berry (Brinjal), Hesperidium (Orange), Drupe (Mango) b) Aggregate (Polyalthia) c) Composite fruit- Sorosis (Jack fruit). Taxonomy Study of various angiosperm families mentioned in the syllabus by using MLS of flower and study of floral whorls	Taxonomy • Analyze the plant groups on various groups • Identify the plant category • Make use of the scientific	K4 K3

	with floral formula and floral diagram.		К3
III	Econom	ic Importance in Plants	
	Binomials and Morphology of the useful parts of the Economic products belonging to the families studied.	• Explain the economic importance of selected plant parts.	К2

Mapping Scheme for the Course Code: U16BY1P1

U16BY	PO	РО	PO	PSO	PSO	PSO	PSO						
1P1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	Μ	Μ	-	-	-	-	-	L	L	Н	L	L
CO2	Н	Η	-	-	-	-	-	-	Μ	L	Μ	Μ	L
CO3	Н	Η	Μ	L	L	L	L	Μ	-	L	Η	Μ	Μ
CO4	Μ	Η	L	Μ	-	-	-	-	-	L	Η	L	Μ
CO5	Н	Η	-	-	-	L	L	-	Μ	L	Η	L	Μ
CO6	Η	Η	L	-	-	L	-	-	L	L	H	L	M

L-Low M-Medium H-High

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, record submission.

Class tests, Model Exams.

Herbarium, field book

End Semester Examination

Indirect

1. Course-end survey

ALLIED BOTANY - I

Semester : I Credits : 3 Course Outcomes: Course Code : U16BYY11 Hours/Week : 4

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit

CO 1	Classify the character feature and classification of	K2	Ι
	plant diversity (Cryptograms and Phaneograms) and		
	use that to identify species in plant kingdom		
CO 2	Explain the structure and lifecycle of Algae, Fungi,	K 2	Ι
	Bryophytes, Ptreridophytes and Gymnosperms with		
	examples from each group		
CO 3	Distinguish the structure and functions of various	K 4	II
	tissues.		
CO 4	Explain the different plant species	K 5	III
CO 5	Examine the internal structure of Dicot and Monocot	K4	IV
	leaf, stem and root		
CO 6	Determine the various components of male and	K5	V
	female gametophyte and mechanism of fertilization		

SYLLABUS:

Unit I: Plant Diversity

1.1 Structure, reproduction and life cycle of

· •		•
(a) Algae	-	Chlamydomonos
(b) Fungi	-	Penicillium
(c) Bryophytes	-	Riccia
(d) Pteridophytes	-	Lycopodium
(e) Gymnosperms	-	Cycas

Unit 2: Morphology of Angiosperms

- 2.1 Leaf shape and Phyllotaxy
- 2.2 Inflorescence
- (a) Racemose, (b) Cymose (c) Special types

2.3 Terminologies in flower description.

Unit 3: Plant Taxonomy:

3.1 Bentham and Hooker Systems of Classification

3.2 Study of following Plant families

(a) Annonaceae, (b) Cucurbitaceae, (c) Lamiaceae, (d) Euphorbiaceae (e) Poaceae.

Unit 4: Anatomy

4.1 Meristematic - Definition, Types (Apical, Lateral and Intercalary) and Functions 4.2 Permanent Tissue - Parenchyma, Collenchyma, Chlorenchyma and Sclerenchyma Complex tissue – Xylem and Phloem

4.3 Primary and Secondary structure of Dicot and Monocot - (a) Leaf (b) Stem (d) Root.

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Unit 5: Embryology

(12 Hours)

5.1 Structure of Flower

5.1 Structure of male gametophyte (Anther- Internal Structure and Functions)

5.2 Structure of Female gametophyte (Ovules - Definition and Types of ovules Orthotropous,

Anatropous, Campylotropous, Hemianatropous and Amphitropous)

5.3 Fertilization and Dicot Embryo (Polygonum)

TEXT BOOKS:

1. Sharma. O. P. 2011. Algae, Tata McGraw Hill Education Pvt. Ltd., New Delhi.

2. Sha rma. O. P. 2006. *Text book of Fungi*, Tata McGraw Hill Education Pvt. Ltd., New Delhi.

3. Sharma. O. P. 2014. Bryophytes, Tata McGraw Hill Education Pvt. Ltd., New Delhi.

4. Sharma. O. P. 2012. *Pteridophytes*. Tata McGraw Hill Education Pvt. Ltd., New Delhi.

5. Bhatnagar, S.P. and Alok Moitra. 2004. *Gymnosperms*, New age international Pvt. Ltd. Publishers, India.

6. Pandey. B.P. 2011. *Plant Anatomy*, Chand Pvt. Ltd.

7. Bhojwani, S.S., Bhatnagar, S. P. and Dantu, P. K. 2015. *The Embryology of Angiosperms* 6th Edition. Vikas Publishing House Pvt. LTD.

8. Verma, S. K and Mohit Verma, 2007. *A text book of Plant Physiology, Biochemistry and Biotechnology*. S. Chand and Company Ltd. New Delhi.

REFERENCES BOOKS:

1.S K Verma and Mohit Verma. 1995. *A Textbook of Plant Physiology, Biochemistry and Biotechnology*. S Chand Publications.

2. Vinod Kumar Jain. 2009. Laboratory Manual of Plant Pathology. Oxford Book Company.

WEB LINK:

https://nptel.ac.in/content/storage2/courses/122103039/pdf/mod1.pdf

TOPICS FOR SELF-STUDY:

Sl.	Topics for Self-	Reference Link
No.	Study	
1.	Hill reactions	https://www.sciencedirect.com/topics/biochemistry-genetics-and- molecular-biology/hill-reaction
2.	Ecological adaptations of xerophytes	https://www.biologydiscussion.com/plants/xerophytes/xerophyte- meaning-and-characteristics-plants-botany/75464

3.	Torus	https://www.easybiologyclass.com/pits-ultra-structure- classification-functions-simple-bordered-pits-similarities- differences/
4.	secondary wall thickening	https://www.biologydiscussion.com/plants/cell-wall/thickening- of-cell-wall-in-plants-with-diagram-botany/68837

SPECIFIC LEARNING OUTCOME (SLO):

Unit/	CONTENT	LEARNING OUTCOME	Highest
Section			Bloom
			taxonomi
			c level of
			transacti
			on
Ι		Plant Diversity	
1.1	Structure, reproduction and life cycle of (a) Algae - <i>Chlamydomonos</i> (b) Fungi - <i>Penicillium</i> (c) Bryophytes <i>Biccia</i>	 Explain the habit and habitat of Cryptograms and phanerograms Tell life cycle of plant 	K2
	(d) Pteridophytes - <i>Lycopodium</i> (e) Gymnosperms- <i>Cycas</i>	groups	K2
II	Morph	ology of Angiosperms	
	 2.1 Leaf shape and Phyllotaxy 2.2 Inflorescence (a) Racemose, (b) Curresce (a) Special types 	 Explain the structure of leaf and its arrangements Make use of defining the plant families 	K2
	2.3 Terminologies in flower description.		K3
III		Taxonomy	
	Bentham and Hooker Systems of Classification 3.2 Study of following Plant families	 Identify the plant species Explain the phylogeny of plant species 	K3 K5
	 (a) Annonaceae, (b) Cucurbitaceae, (c) Lamiaceae, (d) Euphorbiaceae (e) Poaceae. 		

IV		Anatomy	
4.1	Meristematic - Defintion, Types (Apical, Lateral and Intercalary) and Functions	• Explain tissue in leaf, stem and root	K2
4.2	Permanent Tissue - Parenchyma, Collenchyma, Chlorenchyma and Sclerenchyma, Complex tissue -Xylem and phloem	 Examine the order of arrangement of tissues in plants Explain the structure of tissues 	K4 K2
4.3	Primary and Secondary structure of Dicot and Monocot - (a) Leaf (b) Stem (d) Root.	 Compare the internal structure of leaf, stem and root Analyze the arrangement of tissues in leaf, stem and root 	K2 K4
V		Embryology	
5.1	Structure of Flower	• Illustrate the arrangements of various parts in flowers	K2
5.2	Structure of male gametophyte (Anther- External and Internal Structure and Functions)	• Explain the importance of anther and pollen and internal structure of anther	K5
5.3	Structure of Female gametophyte (Ovules – Definition and Types of ovules Orthotropous, Anatropous, Campylotropous, Hemianatropous and Amphitropous)	 Recognize main difference between male and female gametophyte Explain the structure of Ovule 	K2 K5
5.4	Fertilization and Dicot Embryo (Polygonum)	• Illustrate mechanism of fertilization	K2

Mapping Scheme Course Code: U16BYY11

U16BYY	PO	PS	PS	PS	PS								
11	1	2	3	4	5	6	7	8	9	O 1	O 2	O 3	O 4
CO1	L	Н	L	-	-	-	L	-	L	Н	Μ	Μ	Η

CO2	L	H	L	L	-	-	-	-	L	Μ	L	Η	Μ
CO3	L	Н	L	L	-	-	-	-	-	-	-	Η	-
CO4	L	H	L	-	-	-	-	-	-	-	-	H	-
CO5	Μ	H	Μ	Μ	-	-	-	-	-	-	-	L	-
CO6	Μ	H	Μ	H	-	Μ	L	-	L	-	Μ	Μ	M
L-Low	M-	Mode	rate			H-]	High						

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in class works, assignments, seminars.

Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

Allied Botany II

Semester : II Credits : 4 Course Code : U16BYY22 Hours/Week : 2

Course Outcomes:

On completion of this course, the students will be able to

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Understand the plant morphology terminologies and	K2	Ι
	identify morphological peculiarities		
CO 2	Define members of the major angiosperm families by	K3	II
	their features and economic importance.		
CO 3	Evaluate the economic importance of selected	K4	III
	angiosperms.		
CO 4	Make use of the vegetative propagation methods in	K3	IV
	plants		
CO 5	Interpret plant remains, connections in plant evolution	K2	IV
	and conserve the linking plant forms from extinction.		
CO 6	Appraise the adaptations of plants in various habitat and	K5	IV, V
	their ecological and economic importance		

SYLLABUS:

Unit I: Plant Propagation (12 Hours) 1.1 Asexual methods: (a) Cutting (b) Air layering (c) Grafting (d) Budding. 1.2 Micropropagation - Medium, Explants, Techniques and Application **Unit-2: Plant Pathology** 2.1 Detailed study of following plant diseases, symptoms, causaual agents, and control (a) White rust disease (b) Citrus canker (c) TMV 2.2 Plant protection methods Natural methods: (a) Prevention (b) control (C) Eradication (d) Plant quarantine Biological Control and methods of application (a) Pesticide (b) Fungicide **Unit III: Ecology** (12 Hours) 3.1 climatic factors- (a) Edaphic (b) Biotic 3.2 Plant adaptations (a) Xerophytic (b) Hydrophytes (c) Halophytes 3.3 Vegetational types of Tamil Nadu. **Unit IV: Plant physiology** (12 Hours) 4.1 Absorption of water and salts. 4.2 Role of mineral elements (Micro minerals and Macro minerals). 4.3 Nitrogen cycle. 4.4 Transpiration. **Unit V: Photosynthesis** (12 Hours)5.1 Light and Dark Reactions 5.3 Respiration - (a) Aerobic (b) Anaerobic 5.3 Krebs cycle and oxidative phosphorylation. **TEXT BOOKS:**

Fuller, H.J. and Tippo, O, 1967. *College Botany*. Henry Holt and Co.
 Gangully, A.K, 1971. *General Botany*. The New Book Stall Calcutta. Vol I and II.
 Muneeswaran, 2004. A. *Allied Botany*. Titan Nooks, Madurai, India.

REFERENCE BOOKS:

1. Chattopadhya, S.B. 1991. *Principles and Procedures of Plant protection (3rdE.d.,)* Oxford and IBH Publishing Cosec2 (P) Ltd., New Delhi.

2. Edmond Musser and Andres. 1957. Fundamentals of Horticulture. McGraw Hill Book Co

3. Kumar N, 1997. Introduction to Horticulture. Rajalakshmi Publications Nagarcoil, India.

4. Mathawat, G.S.P., D. Sharma and R.k. Sahni. 1996. *A text book of Botany*, Ramesh Book depot, Jaipur.

5. Pandey, B.P. 1999. Economic Botany. S. Chand and Co. New Delhi.

6. Verma, V. 1980. A text book of Economic Botany. Emkay Publications, New Delhi.

WEB LINK:

https://www.iht.edu.in/

https://www.coursera.org/courses?query=botany&page=1

TOPICS FOR SELF-STUDY:

Topics for Self- Study	Reference Link
Jontification of	https://www.coursers.org/loom/plant higlogy
common plants	https://www.coursera.org/learn/plant-blology
Modifications of plants	http://kea.kar.nic.in/vikasana/bridge/biology/chap_05_ppt.pdf
Gootee	https://www.merriam-webster.com/dictionary/gootee

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
Ι		Plant Propagation	
	 1.1 Asexual methods: (a) Cutting (b) Air layering (c) Grafting (d) Budding. 1.2 Micropropagation - Medium, Explants, Techniques and Application 	• Define the morphology, structure and arrangement of leaves, scales, or bracts with flowers along the plant stem.	K2

II		Plant Pathology	
2.1	 .1 Detailed study of following plant diseases, symptoms, causaual agents, and control (a) White rust disease (b) Citrus canker (c) TMV 2.2 Plant protection methods Natural methods: (a) Prevention (b) control (C) Eradication (d) Plant quarantine Biological Control and methods of application (a) Pesticide (b) Fungicide 	 Illustrate the Plant disease infections Plant families. Identify the plant diseases based on their morphological characters. 	K2 K3
III		Ecology	
3.1	 3.1 climatic factors- (a) Edaphic (b) Biotic 3.2 Plant adaptations (a) Xerophytic (b) Hydrophytes (c) Halophytes 3.3 Vegetational types of Tamil Nadu. 	 Explain the ecological adaptations of plants Analyse the morphological adaptations plants observe in their habitat 	K2 K4
IV		Plant Physiology	
4.1	Absorption of water and salts	 Identify the mode of absorption Illustrate and analyze the mechanism of water and salt Absorption 	K3 K2
4.2	Role of mineral elements (Micro minerals and Macro minerals)	• Interpret role of minerals in plant growth	K5
4.3	Nitrogen cycle, Transpiration	 Explain the significance of stomatal transpiration Analyze the mechanism significance of transpiration 	K2 K4
V	Photosynthesis	•	
5.1	Light and Dark Reactions	 Illustrate the mechanism of photosynthesis Explain the importance of photosynthesis 	K2 K4

5.2	Respiration – (a) Aerobic (b) Anaerobic	 Compare the Aerobic and Anaerobic Explain the difference between respiration 	K2 K4
5.5	Krebs cycle and oxidative phosphorylation	 Explain how the plants respire. Apply the mechanism of respiration 	K5 K3

Mapping of Course Code: U16BYY22

U16BYY	PO	PSO	PSO	PSO	PSO								
22	1	2	3	4	5	6	7	8	9	1	2	3	4
CO 1	Η	Μ	-	-	Μ	-	Μ	-	-	Η	L	-	Η
CO 2	Η	Η	Μ	Η	L	-	L	Μ	Μ	Η	Н	-	Н
CO 3	Μ	Η	Μ	L	-	-	Μ	L	Μ	Η	Μ	-	Н
CO 4	Μ	-	Μ	H	Η	Μ	L	H	H	Н	Н	Μ	Μ
CO 5	Μ	H	Μ	L	Μ	-	H	L	Μ	H	L	Μ	H
CO 6	Μ	L	L	L	Μ	L	M	L	L	Η	Μ	L	Μ

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

ALLIED BOTANY PRACTICAL - I

Semester: I & II Credits: 3

Course Code: U16BYYP1 Hours/Week: 3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Distinguish the external, internal, reproductive	K 4	I, II
	structure of cryptogamae and phanerogamae.		
CO 2	Understand and illustrate the structure and	K 3	III
	arrangement of tissue and morphology of plants.		
CO 3	Compare the internal structure of leaf, stem and root	K 4	IV
	of dicot and monocot plants and the gametophyte		
	development.		
CO 4	Distinguish the economic importance of plants	K 4	V
CO 5	Analyse propagation, protection methods for the	K 4	VI, VII
	plants.		
CO 6	Explain the vital plant functions and disease resistance	K 5	VIII, IX
	in plants		

Unit-1: Plant Diversity

(a) Algae	_	Chlamydomonos (Slide)
(b) Fungi	-	Penicillium (Slide)
(c) Bryophyte	-	Riccia - Habit, Thallus (Hand work), Sporophyte (Slide)
(d) Pteriodophyte	-	Lycopodium – Habit, Stem (Hand work),
(e) Gymnosperm	-	Cycas – Corolloid root, Rachis, Leaflets,
		Microsporophyll (Hand work), Habit (Images/ Life speciemen)
		and Megasporophyll (Spotters)

Unit- 2: Taxonomy

(a) Annonaceae – Polyalthia longifollia	(b) Cucurbitaceae – Coccinia indica
(c) Lamiaceae – <i>Leucas aspera</i>	(d) Euphorbiaceae – Euphorbia heterophylla
(e) Poaceae – Chloris barbata	

Unit-3: Anatomy

(a) T.S of dicot Stem, Leaf and Root (Hand work)

(b) T.S of monocot Stem, Leaf and Root (Hand work)

Unit-4: Embryology

(a) T.S of mature anther (Hand work),

(6 Hours)

(6 Hours)

(6 Hours)

Uouna)

(6 Hours)

(b) Ovule - ovules: anatropous, orthotropous, circinotropous, amphitropous and campylotropous (Slides)(c) Fertilization (Slides)

(d) Embryo (i) Cordata (ii) Globular- (Slide/images)

Unit-5: Economic Botany- ((6 Hours)	
(a)Cereals	: Oryza sativa and Triticum aestivum	
(b) Spices	: Cinnamomum verum and Syzygium arom	aticum
(c) Essential oils	: Sandal wood oil, Eucalyptus oil and Lem	on grass oil
(d) Medicinal Plants	: Catharanthus roseus, Withania somnifer	ra, Centella asiatica
Unit-6: Plant propagation - (a) Air layering (b) Wedge grafting (c) Cleft grafting	· (Hand work)	(6 Hours)
Unit-7: Plant Protection (a) Knapsac sprayer (B)	Cyanomag foot pump duster	(3 Hours)
Unit -8: Plant Pathology		
(a) White rust disease (b)	Citrus canker (c) TMV	
Unit-9: Plant Physiology (D (a) Osmosis -Thistle Funnel (b) Bell jar (c) Ganong's Photometer (d) Test Tube and Funnel (e) Ganong's light screen (f) Ganong's Respiroscope (g) Kuhne's Experiment.	emonstration)	(6 Hours)

Text Books:

1. Sharma. O. P. 2011. Algae, Tata McGraw Hill Education Pvt. Ltd., New Delhi.

2. Sharma. O. P. 2006. *Text book of Fungi*, Tata McGraw Hill Education Pvt. Ltd., New Delhi.

3. Sharma. O. P. 2014. Bryophytes, Tata McGraw Hill Education Pvt. Ltd., New Delhi.

4. Sharma. O. P. 2012. Pteridophytes. Tata McGraw Hill Education Pvt. Ltd., New Delhi.

5.Bhatnagar, S.P. and Alok Moitra. 2004. *Gymnosperms*, New age international Pvt. Ltd. Publishers, India.

6. Pandey. B.P. 2011. Plant Anatomy, Chand Pvt. Ltd.

7. Bhojwani, S.S., Bhatnagar, S. P. and Dantu, P. K. 2015. *The Embryology of Angiosperms* 6th Edition. Vikas Publishing House Pvt. LTD.

8. Verma, S. K.and Mohit Verma, 2007. *A text book of Plant Physiology, Biochemistry and Biotechnology*. S. Chand and Company Ltd. New Delhi.

REFERENCES BOOKS:

1.S K Verma and Mohit Verma. 1995. *A Textbook of Plant Physiology, Biochemistry and Biotechnology*. S Chand Publications.

2. Vinod Kumar Jain. 2009. Laboratory Manual of Plant Pathology. Oxford Book Company.

Topics for Self- Study	Reference Link
Hill reactions	https://www.sciencedirect.com/topics/biochemistry-genetics- and-molecular-biology/hill-reaction
secondary wall thickening	https://www.biologydiscussion.com/plants/cell- wall/thickening-of-cell-wall-in-plants-with-diagram- botany/68837
Vegetative propagation	https://www.toppr.com/en-in/content/concept/vegetative- propagation-201517/

TOPICS FOR SELF-STUDY

WEB LINK:

https://nptel.ac.in/content/storage2/courses/122103039/pdf/mod1.pdf

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/	CONTENT	LEARNING OUTCOME	Highest
Secti			Bloom
on			taxonom
			ic level
			of
			transacti
			on
1-		Plant Diversity	

	 (a) Algae - Chlamydomonos (b) Fungi- Penicillium (c) Bryophyte - Riccia - Habit, Thallus Sporophyte (d) Pteriodophyte-Lycopodium - Habit, Stem (e) Gymnosperm-Cycas - Habit, Corolloid root,Rachis, Leaflets, Microsporophyll And Megasporophyll (b) Fungi- Penicillium (c) Bryophyte - Riccia - Habit, Thalius Sporophyte (c) Bryophyte - Riccia - Habit, Thallus Sporophyte (d) Pteriodophyte-Lycopodium (e) Gymnosperm-Cycas - Habit, Corolloid root,Rachis, Leaflets, Microsporophyll (c) Bryophyte - Riccia - Habit, Thallus Sporophyte (c) Bryophyte - Riccia - Habit, Thallus Sporophyte (d) Pteriodophyte-Lycopodium (e) Gymnosperm-Cycas - Habit, Corolloid root,Rachis, Leaflets, Microsporophyll (f) Gymnosperm-Cycas - Habit, Corolloid root,Rachis, Leaflets, Microsporophyll (f) Gymnosperm-Cycas - Habit, Corolloid root,Rachis, Leaflets, Microsporophyll (h) Gymnosperm-Cycas - Habit, Corolloid root,Rachis, Lower plants 		K4 K1 K2
II		Taxonomy	
	a) Annonaceae – Polyalthia longifollia	• Examine the morphological feature of flowering plants	K4
	(b) Cucurbitaceae – <i>Coccinia</i> <i>indica</i>	• Illustrate the external characteristic features of	K2
	(c) Lamiaceae – <i>Leucas aspera</i>	 plant Analyse the floral diagram and formula for each species 	K4
	(d) Euphorbiaceae – Euphorbia heterophylla (e) Poaceae – Chloris barbata		
III		Anatomy	
	 (a) Meristems (b) Tissues Parenchyma, Collenchyma Chlorenchyma and Sclerenchyma, Xylem and 	 Explain the structure of meristems and tissues Examine the structure of permanent tissue though 	K2
	Phloem (a) T.s of dicot Stem, Leaf and Root (b) T.s of	slidesCompare and contrast	K2
	monocot Stem, Leaf and Root	feature between dicot and monocot	K3
		• Identify and illustrate the tissues arrangement in leaf stem and root	
IV		Embryology	
	 (a) T.S of mature anther (b) Ovule - ovules: anatropous, orthotropous, circinotropous, amphitropous and campylotropous (c) Fertilization (d) Embryo- (i) Cordata (ii) 	 Analyse the various development pattern of the reproductive structures of plants. Compare the seed development in various plants. 	K4 K2
	Globular	-	

V	Economic Botany						
	(a) Cereals: Oryza sativa and Triticum aestivum	• List out the economic importance of Plants	K1				
	(b) Spices: <i>Cinnamomum verum</i> and <i>Syzygium aromaticum</i>	 Categorize the plant species based on various characters. Compare the importance of 	K4				
	(c) Essential oils: Sandal wood oil, Eucalyptus oil and Lemon grass oil	plant products	К2				
	(d) Medicinal Plants: Catharanthus roseus, Withania somnifera, Centella asiatica						
VI	P	Plant Propagation	1				
	(a) Air layering	• Compare the various kinds of	K4				
	(b) Wedge grafting	vegetative propagation methods in plants					
	(c) Cleft grafting						
VII	Plant Protection						
	(b) Knapsac sprayer(c) Cyanomag foot pump duster	• Analyse the use of plant protection methods	K4				
VIII	Plant Pathology						
	(a) White rust disease (b) Citrus canker (c) TMV	• Explain the plant disease spreads	K5				
IX		Plant Physiology	I				
	(a) Osmosis -Thistle Funnel	• Demonstrate the various	K2				
	(b) Bell jar	physiological processAnalyse the various					
	(c) Ganong's Photometer	g's Photometer physiological process					
	(d) Test Tube and Funnel	• Explain the important feature of experiments	К5				
	(e) Ganong's light screen						
	(f) Ganong's Respiroscope (g) Kuhne's Experiment						

Mapping Scheme Course Code: U16BYYP1

U16BYY	PO	PSO	PSO	PSO	PSO								
P1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO 1	-	Н	-	-	L	-	-	-	L	Н	L	L	М
CO 2	-	Н	-	-	-	-	-			Η	-	Μ	Н
CO 3	-	Μ	-	-	-	-	-	Η	Μ	-	-	Μ	-
CO 4	-	L	-	Η	-	-	-	Η	Μ	-	-	Μ	-
CO 5	-	Μ	-	Η	Μ	-	Μ	-	-	Μ	-	Н	Μ
CO 6	-	Н	Μ	Η	Μ	-	L	L	Η	Μ	L	Н	Μ

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

ALLIED I: ENVIRONMENTAL BOTANY

Semester I Credits: 3 Code: U17ESBY1 Hours/Week: 3

THEORY

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Interpret the basics of Plant diversity	K2	1
CO 2	Describe the concept of Plant morphology and its Modifications	K2	II

CO 3	Appraise the knowledge about the various aspects of inflorescence and plant taxonomy	K4	II
CO 4	Discus the basic concepts of plant Anatomy and plant Embryology	K6	III
CO 5	Explain the various concepts of Plant physiology	K5	IV
CO6	Describe the various plant diseases and also plant as ecological indicator.	K4	V

Syllabus:

Unit I Plant Diversity

Structure, reproduction and life cycle of Algae - Chlamydomonos, Fungi - Penicillium, Bryophyte -Riccia, Pteridophyte - Lycopodium and Gymnosperm -Cycas.

Unit II Morphology

Root, shoot system and its modification. Inflorescence – Simple and compound and Special types – one example each. Flower description. Taxonomy: Nomenclature (Binomial), Systems of Classification (Bentham and Hooker), Study of following families - Annonaceae, Apocynaceae, Lamiaceae, and Poaceae.

Unit III Anatomy

Tissue (Meristematic and Permanent), primary structures of Dicot and Monocot Stem and Root. Embryology: Structure of Anther and Ovule; Types of Pollination, Fertilization and development of Dicot Embryo.

Unit IV Plant Physiology

Absorption of water and salts. Role of mineral elements; Transpiration. Photosynthesis, Light and Dark Reactions – C3 Cycle, Respiration – aerobic, anaerobic, Krebs cycle.

Unit V Plant as an ecological indicator

Plant as an ecological indicator - characteristics, type and physiological changes. Plant pathology: Detailed study of the following plant diseases, symptoms, causal agents and control measures of white rust, citrus canker and tobacco Mosaic disease.

TEXT BOOKS:

1. Mathawat, G.S.P., Sharma, D. and Sahni. R.K. 1996. A text book of Botany, Ramesh Book depot, Jaipur.

2. Muneeswaran, A., 2004. Allied Botany, Titan Books, Madurai, India.

3. Rao, K.N. Krishnamoorthy, K. and Rao. G.S. 1979. Ancillary Botany, Rajalakshmi Publication, Nagerkoil.

(**12 Hours.**)

(12 Hours.)

(12 Hours.)

(12 Hours.)

(**12 Hours.**)

REFERENCES BOOKS:

1.S K Verma and Mohit Verma. 1995. A Textbook of Plant Physiology, Biochemistry and Biotechnology. S Chand Publications.

Web Link:

https://nptel.ac.in/content/storage2/courses/122103039/pdf/mod1.pdf

Topics for Self- Study	Reference Link
Adaptations of plants	https://www.mbgnet.net/bioplants/adapt.html
secondary wall	https://www.biologydiscussion.com/plants/cell-
thickening	wall/thickening-of-cell-wall-in-plants-with-diagram-
	<u>botany/68837</u>
Vegetative	https://www.toppr.com/en-in/content/concept/vegetative-
propagation	propagation-201517/

TOPICS FOR SELF-STUDY

SPECIFIC LEARNING OUTCOMES (SLO)

Unit	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
Ι	Plant Diversity		
1.0	Structure, reproduction and life cycle of Algae - <i>Chlamydomonos</i> , Fungi - <i>Penicillium</i> , Bryophyte - <i>Riccia</i> , Pteridophyte – <i>Lycopodium</i> and Gymnosperm - <i>Cycas</i> .	Explain lower group of plant kingdom and their reproduction systems.	K2
II	Morphology		
2.0	Root, shoot system and its modification.	Recognize the importance and study morphological features of plants	K2
2.1	Inflorescence – Simple and compound and Special types – one example). Flower description.	Develop the interest in study of inflorescence.	К3
-----	---	---	-----------
2.2	Taxonomy:Nomenclature(Binomial),Systems of Classification (Bentham and Hooker),Study of following families –Annonaceae,Apocynaceae, Lamiaceae,and Poaceae.	Demonstrate the various taxonomical information of plants.	K4
III	Ana	tomy	
3.0	Tissue (Meristematic and Permanent), primary structures of Dicot and Monocot Stem and Root.	Demonstrate understanding of fundamental concepts of plant anatomy	K2
3.1	Embryology: Structure of Anther and Ovule; Types of Pollination, Fertilization and development of Dicot Embryo.	Explain the simple concepts of embryology	K2
IV	Plant pl	nysiology	
4.0	Absorption of water and salts. Role of mineral elements; Transpiration. Photosynthesis, Light and Dark Reactions – C3 Cycle, Respiration – aerobic, anaerobic, Krebs cycle.	Demonstrate fundamental of plant physiology in plants.	K4
V	Plant as an eco	logical indicator	
5.0	characteristics, type and physiological changes.	Discuss about the different Plants as an ecological indicator	K6
5.1	Plant pathology: Detailed study of the following plant diseases, symptoms, causal agents and control measures of <i>white rust</i> , <i>citrus canker</i> and <i>tobacco Mosaic</i> disease.	Demonstrate the various plant diseases in india.	K2 and K4

Mapping Scheme for the Course Code: U17ESBY1

U17ESBY1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	Μ	Μ	L	-	L	Н	-	L	Μ	Н	Н	Μ
CO2	Н	Н	Μ	-	-	Μ	Н	L	Μ	М	Н	М	L
CO3	Н	Μ	Μ	-	-	L	Н	Μ	Н	Н	Н	L	L
CO4	Μ	Η	L	-	-	L	Н	-	Μ	Μ	L	L	Μ

CO5	Η	Μ	Μ	-	L	L	L	Μ	L	Μ	Μ	-	Н
CO6	Μ	L	Μ	-	Η	Μ	L	Μ	Μ	Μ	L	L	Μ

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

Allied Practical I: ENVIRONMENTAL BOTANY LAB

Semester I

Credits: 2

Code: U18ESBP1

Hours/Week: 3

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Compare and Interpret the different group of Species diversity.(Plant diversity – Algae, Fungi, Bryophytes,	K 4	Ι
	Pteridophyte and Gymnosperms)		
CO 2	Distinguish the various habitat in Plants and their Taxonomical form.	K 4	II
CO 3	Discuss the different anatomical structures of various	K 4	III
	mature plant groups.		

CO 4	Examine the different types of Plant Physiology (Demo	K4	IV
	only),		
CO 5	Analyse the plant physiological functions	K4	IV
CO 6	Importance of Plant pathology (<i>White rust, Citrus canker</i> and <i>Tobacco</i>) Plant specimens for the ecological indicators	K 2	V

SYLLABUS:

Unit I

Plant diversity: Habit, stem, root and reproductive parts of Algae- *Chlamydomonos*; Fungi – *Penicillium*; Bryophyte - *Riccia* – habit, thallus and Capsule; Pteriodophyte - *Lycopodium* – habit and stem; Gymnosperm – *Cycas*.

Unit II

Plant Taxonomy: Annonaceae – *Polyalthia longifollia*; Apocyanacea – *Vinca rosea;* Lamiaceae – *Leucas aspera*; Euphorbiaceae – *Euphorbia hirta* :Poaceae – *Chloris barbata*

Unit III

Plant Anatomy: T. S of monocot root - monocot stem - dicot stem - dicot leaf - Embryology: T. S of mature anther - Ovule L. S – Fertilization - Globular – embryo - Cordate embryo

Unit IV

(12 Hours)

(12 Hours)

Plant physiology (Demo only): Bell Jar, Thistle funnel, TA balance, Test tube funnel, Ganong light screen and respiroscope.

Unit V

Plant specimens for the ecological indicators; Plant pathology: *White rust, Citrus canker* and *Tobacco Mosaic* disease.

TEXT BOOKS:

1. Mathawat, G.S.P., Sharma, D. and R.K. Sahni. 1996. A text book of Botany, Ramesh Book depot, Jaipur.

2. Muneeswaran, A. 2004. Allied Botany, Titan Nooks, Madurai, India.

3. Rao, K.N. Krishnamoorthy, K. and G.S. Rao. 1979. *Ancillary Botany*, Rajalakshmi Publication, Nagerkoil.

REFERENCE BOOKS:

1. Chattopadhya, S.B., 1991. *Principles and Procedures of Plant protection*, (3rd Ed.,), Oxford and IBH Publishing Cosec2 (P) Ltd., New Delhi.

2. Fuller, H.J. and Tippo, O. 1967. College Botany, Henry Holt and Co., New York.

3. Gangully, A.K., 1971. *General Botany*, The New Book Stall Calcutta, Vol I and II. Rajalakshmi Publication., Nagerkoil.

(12 Hours)

(12 Hours)

(12 Hours)

WEB LINKS:

https://onlinecourses.nptel.ac.in/noc19_ag04/preview

Topics	References
Plant diversity	https://www.biologydiscussion.com/algae/algae-definition-
Plant Taxonomy	https://www.biologydiscussion.com/plant-taxonomy/plant-taxonomy-
	history-classification-and-plant-kingdom/41/49
Plant Anatomy	https://www.biologydiscussion.com/plants/anatomical-structure-of-
	plants-with-diagram/0430
Plant physiology	https://www.biologydiscussion.com/plant-physiology-2/notes-plant-
	physiology/34397
Plant pathology	https://www.biologydiscussion.com/plant-pathology/biology-notes-

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic level of transaction
1	Plant diversity: Structure, reproduction and life cycle of (a) Algae - <i>Chlamydomonos</i> (b) Energy Paris III	• Explain the habit and habitat of Cryptograms and phanerograms	K2
	 (b) Fungi - Penicillium (c) Bryophytes - Riccia (d) Pteridophytes - Lycopodium 	• Distinguish life cycle of plant groups	K 4

	(e) Gymnosperms- Cycas		
2	Plant Taxonomy: Annonaceae – Polyalthia longifollia; Apocyanacea – Vinca rosea; Lamiaceae –Leucas aspera; Euphorbiaceae – Euphorbia hirta : Poaceae – Chloris barbata	 Examine the morphological feature of flowering plants Illustrate the external characteristic features of plant Analyse the floral diagram and formula for each 	K4 K2 K4
		species	
3	Plant Anatomy: Primary and Secondary structure of Dicot and Monocot - (a) Leaf (b) Stem (d) Root. Structure of Flower Embryology: T. S of mature anther - Ovule L. S – Fertilization - Globular – embryo - Cordate embryo	 Compare the internal structure of leaf, stem and root Determine the arrangement of tissues in leaf, stem and root Illustrate the arrangements of various parts in flowers Explain the importance of anther and pollen and internal structure of anther 	K2 K4 K2 K2
4	Plant physiology (Demo only): (a) Bell Jar, (b) Thistle funnel, (c) TA balance, (d) Test tube funnel, (e) Ganong light screen and (f) respiroscope	Demonstrate the various physiological process	К2
5	Plant specimens for the ecological indicators; Plant pathology: <i>White rust, Citrus canker</i> and <i>Tobacco</i>	Demonstrate the various infected plants	K 2

Mapping Scheme for the Course Code: U18ESBP1

U18ESBP1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO 1	Η	Μ	Н	L	L	-	L	Μ	Μ	Η	Μ	Μ	L
CO 2	Μ	L	Μ	L	Μ	-	-	L	Μ	Η	Μ	Μ	L
CO 3	Μ	L	Μ	L	L	-	-	L	Μ	Н	Μ	L	L
CO 4	Η	L	Η	L	-	-	L	-	Μ	Н	L	L	L
CO 5	Μ	Μ	Η	L	L	-	-	L	Μ	Н	L	L	L
CO 6	Μ	Μ	Η	L	Μ	-	-	Μ	Μ	Η	Μ	L	L

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

Core II : PLANT ANATOMY AND EMRYOLOGY OF ANGIOSPERM

Semester: II Credits : 6 Course Code: U16BY202 Hours/Week: 6

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Classify the major types of tissue system and it functions.		
		K4	Ι
CO 2	Discuss the theories related with Shoot & Root Apical		
	Meristem.	K6	Ι
CO 3	Elaborate the developmental process of secondary growth		
	pattern of shoot& Root.	K6	II

CO 4	Discuss the anatomical structure of Anomalies of Monocot		
	and Dicot.	K6	III
CO 5	Compare the structure and development of Micro		
	gametogenesis and Mega gametogenesis.	K4	IV
CO 6	Evaluate the Process of Development of an Embryo, seed		
	structure and apomixes	K5	V

SYLLABUS:

Unit I : Scope of Plant Anatomy & Meristematic Tissue System(15 Hours)

1.1 Scope of Plant Anatomy- Application in Systematics, forensics and pharmacognosy

1.2 Plant Tissues

1.2 Tissue – definition, characteristics and classification

1.3 Simple and Complex tissues (no phylogeny)- Simple Tissues – Structure and Function of Parenchyma, Collenchyma and Sclerenchyma- Complex Tissues – Xylem, Phloem and its component - Pits and Plasmodesmata

1.4 Meristematic Tissue- Meristem -Characteristics, Classification of meristem based on stage of development- Organization – Shoot Apex – Apical cell theory, Histogen theory, Tunica Corpus theory. Types of Vascular Bundles, Primary structure of Dicot and Monocot stem.- Organisation- Root Apex – Apical cell theory, Histogen theory, Korper-Kappe theory, Quiescent centre, Primary structure of Dicot and Monocot root.

1.5 Secretory Tissue- Laticiferous tissues - (i) Non-articulate Latex Ducts / Latex Cell (ii) Articulate Latex Ducts/ Latex Vessels- Glandular Tissues – (i) Hydathodes, (ii) Lithocysts (iii) Cavities

Unit II: Adaptive and Protective Systems& Vascular Cambium

2.1 Epidermal Tissue System- Cuticle, epicuticular waxes, trichomes (uni and Multicellular, Glandular and Non-glandular – two examples of each), - Stomata and its types

(15 Hours)

2.2 Vascular Cambium

Structure and function - Secondary growth in root and stem

2.3 Nodal Anatomy

Anatomical Structure of Monocot & Dicot Leaf- Definition, Leaf Trace, Leaf gap- Types of Nodes – Unilacunar, Trilacunar and Multilacunar

Unit III- PRIMARY AND SECONDARY GROWTH, ANOMALOUS SECONDARY GROWTH (15 Hours)

3.1. Primary Growth - Definition

3.1.1. Structure of Monocot and Dicot Root, Stem and leaf

3.2. Secondary Growth - Definition

- 3.2.1. Secondary growth in dicotyledonous stem and root
- 3.2.2 Annual Rings
- 3.2.3 Heart Wood and Sap Wood

3.3 Anomalous Secondary growth- Anomalous secondary structure of Genus A*ristalochia* and *Dracaena*

UNIT IV- DEVLOPEMENTAL EMBRYOLOGY IN ANGIOSPERMS (15 Hours) 4.1. Flower and it parts

4.2. Stamen and Androecium (microsporangium)- Structure of anther -Microsporangium-development of anther - Microsporogenesis

4.3 Microgametogenesis- Development of male gametophyte - Pollen development and structure

4.4 Carpel and Gynoecium (Megasporangium)

Megasporangium - Structure - Types of ovules - Orthotropous, Anatropous,

Campylotropous, Hemianatropous and Amphitropous

4.5 Megagametogenesis

Development of female gametophyte - Types of Embryosac – Monosporic (*Polygonum*), Bisporic(*Allium*) and Tetrasporic (*Peperomia*)-Development of Embryosac.

UNIT V: POLLINATION AND FERTILIZATION, APOMIXIS AND POLYEMBRYONY

5.1 Pollination – Definition - Pollination mechanism - Types of Pollination – Self Pollination, Cross Pollination - Advantages and disadvantages of pollination, Pollen pistle interaction

(15 Hours)

5.2 Double Fertilization- Syngamy - Triple fusion

5.3 Post fertilization changes

5.4 Endosperm

Definition, Types – Nuclear, Cellular and Helobial, function of endosperm- Ruminate endosperm

5.5 Embryo development

Development of Embryo in Dicots and monocots

5.6. Seed structure - Structure of monocot and Dicot seed - Importance and reserve food materials of seed

5.7. Apomixis- (a) Definition (b) Parthenocarpy and its application

5.8 Polyembryony and its application

Topics for Self-Study:

Self-Study topics	References
The Cell, Cell	https://www.nature.com/scitable/topic/cell-cycle-and-cell-division-
Cycle & Cell	<u>14122649/</u>
Division	https://www.genome.gov/genetics-glossary/Cell-Cycle

Abscission and	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634118/
healing of wounds	https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-
	<u>8137.1986.tb00606.x</u>
Ecological	https://www.researchgate.net/publication/279432765_Ecological_an
Anatomy	<u>atomy</u>
	https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100- 29452018000400201
Systemic Plant	https://www.sciencedirect.com/topics/agricultural-and-biological-
Anatomy	sciences/plant-anatomy
	https://pubmed.ncbi.nlm.nih.gov/21245193/
Palynology	https://www.floridamuseum.ufl.edu/paleobotany/palynology/#:~:tex t=Palynology%20is%20the%20study%20of,both%20living%20an d%20fossil%20form.
	https://sfb.univie.ac.at/en/research/palynology/
Embryology in	https://link.springer.com/chapter/10.1007/978-3-642-69302-1_14
relation to Taxonomy	https://www.jstor.org/stable/2481545?seq=1
Experimental	https://www.ncbi.nlm.nih.gov/books/NBK10002/
Embryology	https://www.nature.com/articles/080451a0

TEXT BOOKS:

1.Pandey B.P. 1990. Plant Anatomy, S. Chand & Co., New Delhi.

2. Vashista. P.C. 1998. A Text Book of Plant Anatomy. S Nagin & co

3. Bhojwani, S.S. and Bhatnagar, S.P. 2011. *Embryology of Angiosperms*. Vikas Publication House Pvt. Ltd. New Delhi.

4. S.N. Pandey and A. Chadha. 1997. Plant Anatomy and Embryology. Sangam Books Ltd.

REFERENCE BOOKS:

1. Mauseth, J.D. 1988. Plant Anatomy. The Benjamin/Cummings Publisher, USA.

2. Esau, K. 1985. Anatomy of seed plants -John Willey Publication.

3.Cutter.E.G. 1989. Plant Anatomy -Part I, Addison -Wesley Publishing Co.

4. Maheswari. P. 1991: An Introduction to Embryology of Angiosperms. Tata- McGraw hill Publishing Co. Ltd.

5.Swamy B.G.L and Krishnamurthy K.V. 1990. *From flower to fruits*, Tata – McGraw hill publishing Co. Ltd

6. Erdtman, G. 1954. An introduction to pollen analysis. Chronica Botanica, Walthan, Mass. USA.

WEB LINKS:

https://study.com/academy/topic/introduction-to-plant-anatomy.html

SPECIFIC LEARNING OUTCOMES (SLO):

Unit	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
I	Scope of Plant Anat	comy & Meristematic Tissue Syster	n
1.1	Scope of Plant Anatomy	• List out the Scope of Plant Anatomy	K1
	-Application in Systematics, forensics and Pharmacognosy	• Discuss the scope of Plant anatomy in connection with Systematics, Forensics and Pharmacognosy fields.	K2
1.2	Plant Tissues	• Define – Tissue	K1
	Tissues – Definition Characteristics & Classification	• Classify the kinds of Plant tissue	К2
1.3	Simple & Complex tissues (Phylogeny is not included)	• Explain the Structure of Simple Permanent tissues	K2
	Simple Tissues – Structure and Function of Parenchyma, Collenchyma & Sclerenchyma Complex Tissues – Xylem, Phloem and its component	 List out the functions of Simple Permanent tissues. Discuss the Components of Complex tissues. 	K4

	Pits and Plasmodesmata		K2				
1.4	Meristematic Tissue Characteristics, Classification of meristem- based on stage of development	 Classify the meristem and its type. Elaborate the theories 	K4				
	Organisation – Shoot Apex- Apical Cell theory, Histogen theory, Tunica Corpus theory, Types of Vascular Bundles,	• Elaborate the theories related with the shoot apical meristem.	K2				
	Primary Structure of Dicot and Monocot stem Organisation – Root Apex – Apical cell theory. Histogen	• Distinguish Primary Structure of monocot stem from Dicot stem.					
	theory, Korper-Kappe theory, Quiescent centre, Root cap, Endodermis, Origin of lateral root, Primary Structure of Dicot and Monocot Root.	 Discuss the theories related with the Root Apical Meristem Compare the Primary 	K4				
		Structure of Dicot and Monocot Root.	K6 K4				
1.5	Secretory Tissue Laticiferous tissues – I) Non- articulate Latex Ducts/Latex	• Categorize the kind of Secretory tissue system.	K4				
	Cens II) Articulate Latex Ducts/Latex Vessels Glandular tissues – I) Hydathodes II) Lithocytes III) Cavities	• Explain the Glandular tissues and its type.	K5				
II	EPIDERMAL AND VASCULAR TISSUE SYSTEM, NODAL ANATOMY						
2.1	Epidermal Tissue System Cuticle, epicuticular waxes, trichomes (Uni and	• Elaborate the types of Epidermal Tissue System.	K6				
	Multicellular, Glandular and Non-glandular – Two examples each), Stomata and its type.	• Classify the Stomatal types with examples.					

			K4
2.2	Vascular Cambium Structure and Function, Secondary growth in Root and Stem	 Explain the structure and function of Vascular Cambium. Discuss the Secondary growth pattern in Root & Stem. 	K2 K6
2.3	Nodal Anatomy Anatomical Structure of Monocot and Dicot Leaf, Definition – Leaf Trace, Leaf gap, Types of Nodes – Unilacunar, Trilacunar and Multilacunar	 Distinguish the anatomical structure of Monocot and dicot leaf. Define -Leaf Trace, Leaf Gap Explain the types of nodes 	K4 K1 K2
III	PRIMARY AND SECONDARY GROWTH	Y GROWTH, ANOMALOUS SEC	CONDARY
3.1	Secondary growth in dicotyledonous stem and root	• Compare the anatomy of axillary and radially oriented elements of Cambium.	K4
3.2	Nature of Wood Sap wood and Heartwood, Ring and diffuse porous wood and Early and Late Wood	• Discuss about the various kinds of wood	К6
3.3.1	Anomalous Secondary Growth Anomalous secondary growth of Genus Aristalochia and Dracaena	 Criticize the anomalous nature of <i>Aristalochia</i>. Justify the Anomalous secondary growth in <i>Dracaena</i>. 	K5 K5
IV	EMBRYOL	OGY OF ANGIOSPERMS	
4.1	Flower and its parts	• Analyse the flower and its parts	K4

4.2	Stamen and Androecium	•	Distinguish the anther	K4
	(microsporangium)		wall and sporogenous	
	-Structure of anther		ussue	
	- Microsporangium-			
	development of anther			
4.3	Microgametogenesis	•	Explain the development	K2
	- Development of male		of male gametophyte	
	gametophyte			K4
	- Pollen development and	•	Examine the pollen	13.7
	structure		development and structure	
4.4	Carpel and Gynoecium	•	Analyse the Structure and	K4
	(Megasporangium)		development of	
	- Megasporangium – Structure		megasporangium	
	and development			
	-Types of ovules -			
	Orthotropous, Anatropous, Campylotropous	•	Interpret the types of	
	Hemianatropous		ovules	K4
	and Amphitropous			
4.5	Megagametogenesis	•	Explain the development	К2
	Development of female		of female gametophyte	
	gametophyte			
	-Development and structure of			
	Embryosac.			
	-Types of Embryosac –	•	classify the types of	
	Monosporic (<i>Polygonum</i>),		emoryo	K2
	Bisporic (Allium) and			
	Tetrasporic (Peperomia)			
V	POLLINATION, FERTILIZA	TION,	APOMIXIS AND POLYE	MBRYONY
5.1	Pollination	•	Compare the various	K5
	- Definition		types of pollination.	

	-Pollination mechanism			
	-Types of Pollination – Self Pollination, Cross Pollination			
	-Advantages and disadvantages of pollination.			
	Pollen pistle interaction			
5.2	Double Fertilization	•	Analyse the double fertilization changes	K4
	- Syngamy - Thpie Iusion			
5.3	Post fertilization changes	•	Understand the post fertilization changes	K2
5.4	Endosperm - Definition, Types – Nuclear, Cellular and Helobial, function of endosperm- Ruminate endosperm - Endosperm haustoria	•	Categorize the types of endosperm	K4
5 5				W2
5.5	-Development and structure of Embryo in Dicots and monocots	•	development and structure	KJ
5.6	Seed structure -Structure of monocot and Dicot seed	•	Differentiate the monocot and dicot seed structure	K4
	-Importance and reserve food materials of seed	•	Manipulate the importance of the seed	
5.7	Apomixis	•	Compare the apomixes	K4
	- Definition and types		and parthenocarpy	
	- Parthenocarpy and its application			
5.8	-Polyembryony and its application	•	Predict and illustrate the poly embryony	K4

U16BY2	PO	PSO	PSO	PSO	PSO								
02	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	Н	-	-	-	-	Н	Н	L	Н	Н	-	Н
CO2	М	М	Н	-	-	-	Н	М	-	-	-	-	Н
CO3	Н	-	-	-	М	М	Н	-	-	М	М	-	Н
CO4	Н	-	М	-	L	М	Н	-	-	L	L	-	Η
CO5	Μ	L	-	-	Μ	Н	М	L	М	Μ	Μ	-	Η
CO6	Η	L	Η	1	L	Μ	Η	М	М	Н	Η	-	Η

Mapping Scheme for the Course Code: U16BY202

L – Low (1) M-Medium (2) H-High (3)

Assessment/Evaluation:

1. Continuous Assessment by conducting Class test, Group Discussion and Quiz.

2. Assessment also done through Seminar Presentation, submission of Assignments and Model Making and Model exams.

3. End Semester Examination.

MAJOR PRACTICAL II – PLANT ANATOMY AND EMBRYOLOGY

[CORE PRACTICAL – II]

Course code: U16BY2P2 Credits: 2 Course Outcomes:

Semester : II Hours/Week: 3

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Take part in hand dissection in Plant Anatomy and	K4	Ι
	observing various tissue system.		

CO 2	Distinguish various kind of tracheary elements by	K4	II
	performing Maceration technique.		
CO 3	Dissect the plant specimen of Stem, root and Leaf of Dicot and Monocot Plants and compare its anatomical features.	K4	III
CO 4	Dissect out and mount the Pollinium and Dicot Embryo.	K4	IV
CO 5	Analyze the structure of anther and Embryo sac.	K4	V
CO 6	Explain the process of pollination and its mechanisms.	K2	V

SYLLABUS:

Unit-1

Study the Structure of shoot apex using hand section and preparation of temporary mounts-*Hydrilla* twigs with shoot tips. Study of the distribution and function of permanent tissues. (i) Parenchyma (ii) Sclerenchyma and (iii) Collenchyma (iv) Xylem (v) Phloem. To study secretory tissue system through permanent slides: (i) Articulated Latex vessels (ii) Non-Articulated Latex Ducts.

Study of Tracheary elements by maceration technique: (1) *Cycas* rachis (2) *Cucurbita* Stem. Study of Stomata from epidermal peels: (i) Actinocytic (ii) Diacytic (iii) Paracytic (iv) Anamocytic (v) Anisocytic (vi) Gramineous. Study of Nodal anatomy: (i) Unilacunar Node (ii) Trilacunar Node (iii) Multilacunar Node.

Unit-3

Unit-2

Study of internal structure and preparation of T.S of Primary structure of Dicot and Monocot: Root - *Cicer*, *Canna*; Stem – *Tridax*, *Sorghum*, Leaf – *Tridax*, Grass. Secondary structure: Dicot Root – *Tridax* sp.; Dicot Stem –*Pongamia*. Study of anomalous secondary thickening and preparation of T.S – (i) *Dracaena* (ii) *Aristolochia*.

Unit -4

Study of floral parts using bisexual and unisexual flowers. Isolation and mounting of embryo - (i) Globular embryo (ii) Cordate embryo - *Tridax* flower. Pollinium dissection – *Calotropis* flower.

Unit -5

Structure of anther and microsporogenesis using permanent slides. Study of ovule & its types -(i) Anatropous (ii) Orthotropous (iii) Circinotropous (iv) Amphitropous (v) Campylotropous using permanent slides and photographs. Study of Embryo sac & Fertilization using

(6Hours)

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

photographs. Structure of pollen grains using whole mounts (*Catharanthus, Hibiscus, Acacia, Grass*).

Topics	References
Maceration	https://www.ableweb.org/biologylabs/wp- content/uploads/volumes/vol-19/9-yeung.pdf
Anomalous secondary growth	http://virtualplant.ru.ac.za/Main/ANATOMY/prac5.htm
Pollen grain Morphology	https://link.springer.com/chapter/10.1007%2F978-3-211-79894-2_4

Topics for Self Study:

REFERENCE BOOKS:

Plant Anatomy

1. Pandey, B. P. 1984. *Plant Anatomy*. S. Chand and Company Ltd, New Delhi.

3. Esau, K. 1953. Plant Anatomy. John Wiley and Sons, INC, New York, London.

4. Cutter, E. G. 1978. *Anatomy part I* – The English Language Book Society and Edward Arnolds Ltd. London.

5. Eames, A. J. and Mac Daniels, I. H. 1947. *An introduction to plant Anatomy*. MC Graw and Hill Book Company, INC., New York, London.

Developmental Botany

1. Bhojwani, S. S. and Bhatnagar, S. P. 1978. *The Embryology of Angiosperms*. Vikas Publishing House Pvt. Ltd,

2. Maheswari, P. 1950. *An introduction to the Embryology of Angiosperms*. Vikas Publishing House Pvt. Ltd.

3. Agarwal, S. B. 1972. Embryology of angiosperms. Sahitya Bhavan, Agra.

4. Agrawal, R.L. 1982. Seed technology. Oxford and IBH Publishing CO.

WEB LINKS:

1. Pollen Morphology. (n.d.). Pollen Terminology, 15–25. doi:10.1007/978-3-211-79894-2_4

2. https://bio.biologists.org/content/7/5/bio031237

3.<u>https://biocyclopedia.com/index/introduction_to_botany/simple_tissues_and_complex_tissu</u>es.php

Unit/ Section	Course Content	Learning Outcomes	Highest Blooms Taxonomic level of transaction
1	Study the Structure of shoot apex using hand section and preparation of temporary mounts- <i>Hydrilla</i> twigs with shoot tips.	• Dissect out the Shoot Apical Meristem.	K4
	Study of the distribution and function of permanent tissues. (i) Parenchyma (ii) Sclerenchyma and (iii) Collenchyma (iv) Xylem (v) Phloem	• Identify the simple tissues and Complex tissues	К3
	To study secretory tissue system through permanent slides: (i) Articulated Latex vessels (ii) Non-Articulated Latex Ducts	• Distinguish between Articulated Latex vessels & Non- articulated latex ducts	К4
2	Study of Tracheary elements by maceration technique: (1) <i>Cycas</i> rachis (2) <i>Cucurbita</i> Stem. Study of Stomata from epidermal peels: (i) Actinocytic	• Examine the Tracheary elements.	K4
	(ii) Diacytic (iii) Paracytic (iv)Anamocytic (v) Anisocytic (vi)Gramineous.	• Outline the types of stomata	K2
	Study of Nodal anatomy: (i) Unilacunar Node (ii) Trilacunar Node (iii) Multilacunar Node.	• Identify the kinds of Nodal anatomy.	К3
3	Study of internal structure and preparation of T.S of Primary structure of Dicot and Monocot: Root - <i>Cicer</i> , <i>Canna</i> ; Stem – <i>Tridax</i> , <i>Sorghum</i> , Leaf – <i>Tridax</i> , Grass. Secondary structure:	• Compare the anatomical features Primary Structure of stem, root and leaves of Dicot and Monocot Plant specimens.	K5 K5

SPECIFIC LEARNING OUTCOMES (SLO):

4	 Dicot Root – <i>Tridax</i> sp.; Dicot Stem –<i>Pongamia</i>. Study of anomalous secondary thickening and preparation of T.S – (i) <i>Dracaena</i> (ii) <i>Aristolochia</i>. Study of floral parts using bisexual and unisexual flowers. Isolation and mounting of embryo - (i) Globular embryo (ii) Cordate embryo - <i>Tridax</i> flower. Pollinium dissection – <i>Calotropis</i> flower. 	 Compare the anatomical anomalies of Secondary thickenings of <i>Dracaena</i> and <i>Aristolochia</i> Examine the fl parts of bisexu and unisexual flowers. Dissect out and mount the Dico Embryo Dissect out and 	oral K4 al K4 l bt K4
5	Structureofantherandmicrosporogenesisusingpermanentslides.Study of ovule & its types – (i)Anatropous(ii)OrthotropousCircinotropous(iv)AmphitropousCampylotropoususingpermanentslidesand photographs.Study of Embryo sac &Fertilizationusingphotographs.Structureofpollengrainsusingwholemounts(Catharanthus, Hibiscus, Acacia, Grass).	 mount the Poll Identify and lat the parts of ant Distinguish the various kind of ovules and its arrangement. Analyze the Structure of an Embryo sac. Identify the Po Morphology. 	inium bel K3 her. K4 K4 K3 llen

Mapping Scheme for Course Code: U16BY2P2

U16BY 2P2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Μ	-	-	-	L	-	Μ	-	-	L	-	L	Н
CO2	Η	-	-	-	-	-	Μ	-	-	-	-	Η	Н
CO3	Μ	L	-	-	L	-	Μ	-	Μ	L	-	Η	Η
CO4	Μ	L	L	-	L	-	Μ	-	Μ	L	-	-	Μ
CO5	L	-	L	-	-	-	L	-	L	Η	-	-	L
CO6	L	L	L	L	L	L	L	Μ	Η	Η	L	Μ	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect Course-end survey

CORE PRACTICAL III - PLANT DIVERSITY- I (THALLOPHYTES AND BRYOPHYTES)

Semester : III

Course Code : U16BY3P3

Credits : 2

Course Outcome

On completion of this course, the students will be able to:

No	Course Outcome (CO)	Level	Unit
CO1	Name and identify the different algal	K3	Ι
	Specimens		
CO2	Show the sections and understand the economic	K1	Ι
	importance of algae		
CO3	Distinguish the fungal specimens and diseases	K4	II
	caused by them		
CO4	Experiment the specimen by cross sectioning.	K3	II
CO5	Explain the morphological and general	K2	III
	characteristics of lichens and describe the fruiting		
	bodies of Lichen- Apothecium		
CO6	Summarise the morphology and general characters	K2	IV
	of Riccia		

Algae

(15 Hours)

 To analyse the general characteristics of the algal specimens and identification with reasons Oscillatoria, Volvox, Navicula, Dictyotaand Gracillaria.

Hours/Week : 3

2. To understand taking section and giving structural features- Dictyota and Gracillaria.

3. To know the economic importance of Laminaria, Gracillaria, Chondrus and Spirullina

Fungi

(15 Hours)

(6 Hours)

(9 Hours)

1. To study the fungal specimens in reference to plant disease and their spore structure Phytophthora, Cersospora and Mucor.

2. To disseminate knowledge on fruiting bodies of Peziza and Polyporus and to study the morphological features.

3. Taking cross section and structural features- Peziza and Polyporus

Lichens

1. To study the morphological and general characteristics of lichens

2. To describe the fruiting bodies of Lichen- Apothecium

Bryophytes

1. To study morphology of Riccia, Anthoceros and Funaria

2. To comprehend the development such as antheridia, archegonia in Riccia, Anthoceros and Funaria

3. To study the sporophyte of Riccia and capsule of Anthoceros, Polytrichum and Funaria

PRACTICAL MANUAL

AlGAE

1. Bhatia, K.N. 2000. Algae. Chand and Co. New Delhi.

2. Fritsch, F.E, 1965. *The Structure and Reproduction of Algae*: Cambridge University press, Cambridge, London.

3. Venkateswarlu, 1970. V. A Text Book of Algae. Maruthi Book Depot, Guntur, Hyderabad, India.

FUNGI

- 1. Alexopoulos, C.J. and Delavoryas, T, 1987. *Morphology of Plants and Fungi*. Harper and Row Publishers, New York.
- 2. Vashista, B.R. 2000. *Botany for Degree Students Fungi*. S.Chand and Co., New Delh, India.
- 3. Mims, C.W. and Blackwell, M. 1996. *Introductory Mycology*. John Wiley and Sons, New York.
- 4. Srivastava, J.O. 1996. Introduction to Fungi (2ndEdn.,) S.Nagin and Co., Meerut India.
- 5. Sharma.O.P. 1992. Test Book of Fungi. Tata McGraw-Hill Publishing C., New Delhi.

BRYOPHYTES

1. Srivastava, N.N. 1996. Bryophyta. Pradeep Prakashan, Meerut, India.

2. Vashista, B.R. 2000. *Botany for Degree Students – Bryophytes*. S.Chand and Co., New Delhi, India.

Topics for self-learning

Algae thallus	https://www.plantscience4u.com/2014/11/range-of-thallus-structure-in- algae.html

WEB LINKS:

https://www.coursera.org/learn/algae-biotechnology

SPECIFIC LEARNING OUTCOMES (SLO):

Unit	CONTENT Unit I : A	LEARNING OUTCOME lgae	Highest Bloom taxonomic level of transaction
1.1	To analyse the general characteristics of the algal specimens and identi fication with reasons- Oscillatoria, Volvox, Navicula, Dictyotaand Gracillaria.	 Name and list the general characteristics of algae Identify the structural and functional differences between different algal specimens. 	K1,K4 K3
1.2	To understand taking section and giving structural features- <i>Dictyota and</i> <i>Gracillaria</i> .	• Develop sections of the specimens	K4
1.3	To know the economic importanceof <i>Laminaria</i> , <i>Gracillaria</i> , <i>Chondrus and</i> <i>Spirullina</i>	• Explain the economic importance of algal species	K2
	Unit II- F	ungi	

2.1	To study the fungal specimens in reference to plant disease and their spore structure <i>Phytophthora, Cersospora</i> and <i>Mucor.</i>	• Relate the fungal specimen and diseased caused by them.	K2
2.2	To disseminate knowledge on fruiting bodies of <i>Peziza</i> and <i>Polyporus</i> and to study the morphological features.	• Explain the mapping of genes in a chromosome.	K2
2.3	Taking cross section and structural features- <i>Peziza</i> and <i>Polyporus</i>	• Develop sections of the specimens	K4
	Unit III L	ichens	
3.1	To study the morphological and general characteristics of lichens	• Explain the morphological and general characters of lichens	K2
3.2	To describe the fruiting bodies of Lichen- Apothecium	 explain the fruiting bodies of Lichen- Apothecium 	K2
	Unit –IV Bry	vophytes	
4.1	To study morphology of <i>Riccia, Anthoceros</i> and <i>Funaria</i>	• Explain the morphology of Bryophytes	K2
4.2	To comprehend the development such as antheridia, archegonia in <i>Riccia, Anthoceros</i> and <i>Funaria</i>	 Decide and identify the development of Riccia, Anthoceros and Funaria 	K3
4.3	To study the sporophyte of <i>Riccia</i> and capsule of <i>Anthoceros, Polytrichum and Funaria</i>	• Study and explain the sporophyte of <i>Riccia</i> and capsule of <i>Anthoceros</i> , <i>Polytrichum and</i> <i>Funaria</i>	K2

Mapping Scheme for the Course Code: U16BY3P3

U16BY3P3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	L	Μ	L	-	L	-	Μ	L	Μ	Н	L
CO2	Н	Н	L	Μ	L	-	L	-	L	L	Μ	Н	L
CO3	Н	Н	L	Μ	L	-	-	-	L	L	Μ	Н	L
CO4	Н	Н	L	Μ	L	-	-	-	Μ	L	Μ	Н	L
CO5	Н	Н	L	Μ	L	-	-	-	-	L	Μ	Η	L
CO6	Н	Н	L	Μ	L	-	-	-	-	L	Μ	Н	L

CORE- III- PLANT DIVERSITY- II

(PTERIDOPHYTES, GYMNOSPERMS AND PALEOBOTANY)

Course code: U16BY404 Credits: 5

Semester: IV Hours/Week:6

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Classify the pteridophytes, explain their	K5	Ι
	characteristics, Differentiate the stelar types		
CO 2	Identify characters, and reproduction in pteridophytes	K4	II
CO 3	Assess the living Gymnosperms and their morpho-	K4	III
	anatomical adaptations for development.		
CO 4	Appraise the structure and reproduction of selected	K5	IV
	gymnosperms		
CO 5	Interpret plant remains, connections in plant evolution	K2	V
	and conserve the linking plant forms from extinction.		
CO 6	Appraise the adaptations of plants in various habitat	K5	I - V
	and their ecological and economic importance		

SYLLABUS:

Unit I: Pteridophytes

(18 Hours)

Specific objective: To understand the general characters, classification and stele types of Pteridophytes

- 1.1 General characters
- 1.2 Sporne's Classification
- 1.3 Stelar Types
- 1.3.1. Haplostele and Actinostele
- 1.3.2. Plectostele and mixed stele
- 1.3.3. Siphnostele
- (a) Ectophloic siphnostele (b) Ambphiphloic siphnostele
- 1.3.4. Solenostele
- (a) Ectophloic solenostele (b) Ambphiphloic solenostele
- 1.3.5. Distele and Polystele
- 1.4 Apospory
- 1.5 Apogamy
- 1.6 Heterospory
- 1.7 Seed habit

Unit II- Pteridophytes- Type study

Specific Objective:

To study the structure and reproduction of selected pteridophytes species

- 2.1 Habit and habitat,
- 2.2 External and internal morphology Structure,
- 2.3 Asexual and sexual reproduction
- 2.4 life cycles (Development not required)
- (a) Psiltoum (b) Lycopodium (c)Equisetum (d) Adiantum

Unit III: Gymnosperms

Specific Objective

(18 hours)

(18 Hours)

To understand the general characters, classification and economic importance of Gymnosperms	
3.1 General characters	
3.1.1. Comparison of Ferns and Gymnosperms	
3.1.2. Comparison of Angiosperms and Gymnosperms	
3.2 Sporne's Classification	
3.3 Economic Importance	
(a) Food (b) Medicine (c) Timber	
Unit IV- Gymnosperms – Type study	(18 Hours)
4.1 Habit and habitat	
4.2 External and internal structure,	
4.3 Reproduction - asexual and sexual	
4.4 Life Cycles (Development not required).	
(a) Cycas (b) Pinus (c) Gnetum	
Unit V: Paleobotany	(18 Hours)
5.1 Fossils - Definition	
5.2 Methods of fossilization	
5.2.1. Petrifactions	
5.2.2. Compressions	
,i5.2.3. Impressions	
5.3 Geological time scale	
5.4 Radio carbon dating	
5.5 A study on fossil forms	
(a) Rhynia (b)Lepidodendron (c) Lepidocarpon (d)Calamites (e) 5.4.5. Willams	onia

Topics for Self-Study:

Topics	References/Web links
Phyllopodium	http://www.theplantlist.org/browse/A/Scrophulariaceae/Phyllopodium/

Adaptations in Gymnosperms	https://prezi.com/k5fbjjt91vzz/gymnosperms-adaptation/ http://cortland.edu/waldbauer-trail/12-plant-evolution-III.html
Types of indusium	https://www.researchgate.net/figure/A-Types-of-receptacle-and- indusium-sketches-only-which-were-not-based-on-any- particular_fig4_280831494
living fossils - Gingko biloba	https://palaeobotany.org/index.php/living-fossils/ https://motherearthworks.com/healthy-living-learning-center/healthy- living-center-articles/gingko-biloba-a-living-fossil/

TEXT BOOKS: Pteridophytes

- 1. Parihar, N.S. 1965. *An introduction to Embryophyta Vol. 1 Pteridophyta*. Central Book Depot. Allahabad, India.
- 2. Smith, G.M. 1956. *Cryptogamic Botany Vol. II. (Bryophytes & Pteridophytes)*. McGraw Hill Book Co., N.Y.
- 3. Sporne, K. R. 1970. *The Morphology of Pteridophytes. (The structure of Ferns and Allied Plants).* Hutchinson University Library, London.
- 4. Sharma, O. P. 1990. Text Book of Pteridophyta. Macmillan India Ltd., Delhi.
- 5. Sundararajan, S. 2007. *Introduction to Pteridophyta*. New Age International Publishers, New Delhi, India.
- 6. Vashista, P.C. 2008. *Botany for Degree Students Pteridophyta*. S. Chand and Co., New Delhi, India.

Gymnosperms

- 1. Coulter, J. M. and C. J. Chamberlain. 1964. *Morphology of Gymnosperms*. Central Book Depot, Allahabad, India.
- 2. Sporne, K. R. 1971. *The Morphology of Gymnosperms. (The structure and Evolution of Primitive seed Plants).* Hutchinson University Library, London.
- 3. Sharma, O.P. 1997. Gymnosperms. Pragati Prakashan, Meerut, India.
- 4. Vashista, P.C. 2006. *Botany for Degree Students Gymnosperms (2nd Edn.,)* S. Chand & Co., New Delhi, India.

Paleobotany

- 1. Arnold, C.A. 1947. An Introduction to Paleobotany. McGraw Hill Book Co., New York.
- 2. Delevoryas, T. 1962. *Morphology and Evolution of Fossil Plants*. Holt, Rinehart and Winston. New York.
- 3. Shukla, A.C. and Misra, S. P. 1975. *Essentials of Paleobotany*. Vikas Publishing House (P) Ltd., Delhi,1975.

4. Venkatachala, B. S., Shukla, M. and Sharma, M. 1992. *Plant Fossils – a Link with the past (A Birbal Sahni Birth Centenary Tribute)*. Birbal Sahni Institute of Paleobotany, Lucknow, India

REFERENCE BOOKS:

- 1. *Plant Diversity and Evolution*, 2016. Martin Ingrouille, Bill Eddie, Cambridge University Press, ISBN-13: 978-0521794336.
- 2. Andrew Hipp, Phil Gibson J, Terri R Gibson. 2007. *Plant Diversity*. Infobase Publishing.

Web link:

https://nptel.ac.in/content/storage2/courses/102103012/module1/lec1/7.html

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/Se	CONTENT	LEARNING OUTCOME	Highest
ction			Bloom
			taxonomic
			level of
T			transaction
1.	Unit I :	Pteridophytes	
	General characters		K2
1.1		• List out the systematic characteristics of Pteridophytes	
	1.2 Sporne's Classification	 Classify major Pteridophytic forms Differentiate ferns according to their habitat 	K2
1.3	1.3 Stelar Types1.3.1. Haplostele and Actinostele	• Classify the stellar types based on their structure	K2
	1.3.2. Plectostele and mixed stele	• Explain the stelar types	K5
	1.3.3. Siphnostele	• Differentiate the distale and	
	(a) Ectophloic siphnostele(b) Ambphiphloic siphnostele	• Differentiate the distere and polystele	K4
	1.3.4. Solenostele		
	(a) Ectophloic solenostele(b) Ambphiphloic solenostele		
	1.3.5. Distele and Polystele		

1.4 1.5	Apospory Apogamy	• Explain about the apospory and apogamy	K2
1.6 1.7	Heterospory Seed habit	• Examine each theories related to evolution.	K2
Π	Pte	ridophytes- Type study	
2.1 2.2	Habit and habitat, External and internal morphology Structure,	 Explain the habit and habitat of Pteridophytes Discuss the morpho- anatomical structure of Pteridophytes 	K2 K5
2.3 2.4	Asexual and sexual reproduction Life cycles (Development not required) (a) <i>Psiltoum</i> (b) <i>Lycopodium</i> (c) <i>Equisetum</i> (d) <i>Adiantum</i>	 Explain the habit and habitat of Pteridophytes. Relate the morphology of Pteridophytes. Compare the similarities and dissimilarities with lower and higher forms 	K2 K4
III		Gymnosperms	
3.1	3.1 General characters3.1.1. Comparison of Ferns and Gymnosperms3.1.2. Comparison of Angiosperms and Gymnosperms	 Compare the various habitats of Gymnosperms List out the systematic characteristics of gymnosperms Compare ferns with gymnosperms Compare Angiosperms with Gymnosperms 	K2 K2 K2 K2
3.2	Sporne's Classification	Classify gymnosperms using the unique characters.	К2
3.3	Economic Importance (a) Food (b) Medicine (c) Timber	List out the uses of gymnosperms	К2
1 V	Gyn	mosperms – 1 ype study	

4.1 4.2 4.3 4.4	 Habit and habitat External and internal structure, Reproduction - asexual and sexual Life Cycles (Development not required). (a) Cycas (b) Pinus (c) Gnetum 	 Recall the habit, habitat and their characters. Explain the anatomical and evolutionary aspects of Gymnosperms. Experiment with various types of reproduction in the selected gymnosperms Illustrate the life cycle of gymnosperms 	K1 K5 K4 K2
4.4	Economic importance	 Recognize the importance of gymnosperms Enumerate the economic importance of Gymnosperms. 	K2 K5
V		Paleobotany	
5.1	Fossils - Definition	 Define fossils Compare the various fossil formation process 	K1 K2
5.2	Methods of fossilization Petrifactions Compressions Impressions	Discuss the methods of fossilization	K6
5.3	Geological time scale	• Explain geological time scale and the process of carbon dating on dating	K2
5.4	Radio carbon dating	• Explain and utilizing the radio carbon dating	K5
5.5	A study on fossil forms (a) <i>Rhynia</i> (b) <i>Lepidodendron</i> (c) <i>Lepidocarpon</i> (d) <i>Calamites</i> (e) <i>Willamsonia</i>	• Summarize the fossilization using the examples	K2

Mapping Scheme for the Course Code: U16BY404

U16BY404	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	-	Н	L	Н	Н	Н	L	Μ	Μ	L	Η	-
CO2	Η	L	Μ	-	-	L	L	-	L	Η	Μ	Η	-
CO3	Η	Μ	-	-	Μ	-	-	-	Μ	Η	L	Μ	L
CO4	Η	L	L	-	L	-	-	-	Μ	Μ	-	Η	L
CO5	Μ	Μ	-	Μ	-	L	Μ	L	-	Μ	Η	-	L
CO6	Μ	-	-	L	L	Μ	L	L	Μ	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

Course Assessment Methods:

Direct

- 1. Continuous Assessment in Class test, Group Discussion and Quiz.
- 2. Assessment also done through Seminar Presentation, submission of Assignments and Model Making and Model exams.
- 3. End Semester Examination

Indirect

1. Course-end survey

CORE PRACTICAL III - PLANT DIVERSITY- II (PTERIDOPHYTES, GYMNOSPERMS AND PALEOBOTANY)

Semester : IV

Credits : 2

Course Code : U16BY4P4

Hours/Week : 3

Course Outcome

On completion of this course, the students will be able to:

No	Course Outcome (CO)	Level	Unit
CO1	Interpret and Explain the morphology and anatomy	K2	Ι
	of the Pteridophytes.		
CO2	Develop the crosssections of Pteridophyte	K3	Ι
	specimens		
CO3	Interpret and Explain the morphology, vegetative	K2	II
	and reproductive parts of Gymnosperms.		

CO4	Experiment the Gymnosperm specimens by taking	K3	Π
	cross sections.		
CO5	Summarise the different aspects of fossil form according to geological time scale	K2	III
CO6	Interpret plant remains, connections in plant evolution and conserve the linking plant forms from extinction through field visits and exposures.	K2	III

Syllabus:

PTERIDOPHYTES

(15 Hours)

1. A study of the morphology, anatomy and sori organization of the following genera- Psilotum, Lycopodium, Adiantum and Equisetum.

2. Cross section:- Lycopodium- stem, Psilotum, Adiantum- petiole and sporangia and Equisetum stem.

GYMNOSPERMS

1. A study of the morphology, vegetative and reproductive parts of the of the genera- Cycas, Pinus and Gnetum

2. To train the students to take section on Cycas- corollid root, leaf and rachis and microsporophyll, Pinus- needle and stem and Gnetum- stem.

PALEOBOTANY

(15 Hours)

(15 Hours)

1. Fossil forms- Rhynia, Lepidodendron, Lepidocarpon and Calamites.

2. Field Trip to National fossil park

Topics for self study:

Topics	References
Birbal Sahni	https://www.bsip.res.in/
Steles in ferns	https://www.britannica.com/plant/fern/Vascular-tissues

TEXT BOOKS:

1. Parihar, N.S. 1965. An introduction to Embryophyta Vol. 1 Pteridophyta. Central Book Depot. Allahabad, India..

2. Smith, 1956. G.M. Cryptogamic Botany Vol. II. (2ndEdn.,). (Bryophytes & Pteridophytes). McGraw Hill Book Co., N.Y

3. Venkatachala, B. S., Shukla, M. and Sharma, M. 1992. *Plant Fossils – a Link with the past (A Birbal Sahni Birth Centenary Tribute)*. BirbalSahni Institute of Paleobotany, Lucknow, India

WEB LINKS:

http://2020.botanyconference.org/engine/search/index.php?func=detail&aid=444 SPECIFIC LEARNING OUTCOMES (SLO):

Unit	CONTENT	LEARNING OUTCOME	Highest Bloom
			taxonomic level of transaction
	Unit I : Pteric	lophytes	
1.1	A study of the morphology, anatomy and sori organization of the following genera- Psilotum, <i>Lycopodium, Adiantum</i> and <i>Equisetum</i> .	 Name and list the general characteristics of algae Identify the structural and functional differences between different algal specimens. 	K1,K4 K3
1.2	Cross section:- Lycopodium- stem, Psilotum, Adiantum- petiole and sporangia and Equisetumstem.	• Develop sections of the specimens	K4
	Unit II- Gymr	nosperms	
2.1	A study of the morphology, vegetative and reproductive parts of the of the genera- <i>Cycas</i> , <i>Pinus</i> and <i>Gnetum</i>	 Name and list the general characteristics of species Identify the structure of vegetative and reproductive parts of gymnosperm species. 	K1,K4 K3
2.2	To train the students to take section on <i>Cycas</i> - corollid root, leaf and rachis and microsporophyll, <i>Pinus</i> - needle and stem and <i>Gnetum</i> - stem.	• Develop sections of the specimens	K4

Unit III Paleobotany								
3.1	Fossil forms- <i>Rhynia</i> , <i>Lepidodendron</i> , <i>Lepidocarpon and</i> <i>Calamites</i> .	•	Explain the different fossil forms and the eras in the geological time scale	K2				
3.2	Field Trip to National fossil park.	•	Decide and identify the development of Riccia, Anthoceros and Funaria	К3				

Mapping Scheme for the Course Code: U16BY4P4

U16BY4P4	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Н	L	Μ	L	-	L	-	Μ	L	Μ	Н	L
CO2	Н	Н	L	Μ	L	-	L	-	L	L	Μ	Η	L
CO3	Н	Н	L	Μ	L	-	-	-	L	L	Μ	Н	L
CO4	Н	Н	L	Μ	L	-	-	-	Μ	L	Μ	Н	L
CO5	L	H	-	-	-	-	Η	L	-	-	-	-	-
CO6	L	H	-	-	-	-	Н	L	Μ	-	-	-	-

Course Assessment Methods:

Direct

- 1. Continuous Assessment in Class test, Group Discussion.
- 2. Assessment also done through Seminar, Record
- 3. End Semester Examination

Indirect

1. Course-end survey

NMEC I - NURSERY TECHNOLOGY

Course Code: U16BYPE1

Credits: 2

Hours/Week: 3

On completion of this course, the student will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Summarize the basic concepts of Nursery Management.	K2	Ι
CO 2	Explain with the process of vegetative propagations	K5	Ι
CO 3	Make use of the <i>in vitro</i> cultivation methods.	K3	II
CO 4	Identify plant multiplication methods and nursery structures.	K3	III
CO 5	Distinguish greenhouse farming, net farming, pot culturing.	K4	IV
CO 6	Identify the methods of harvesting, storage in various plants	K3	V

SYLLABUS:

Unit I: Introduction

Methods of Propagation-Sexual Propagation, Vegetative Propagation, Cuttings, Layering, Grafting, Budding.

UNIT II : Tissue culture

Methods of Plant multiplication in vitro. Basic parameters for propagation in vitro.

UNIT III : Nursery Structures

Store House, Potting and Packing Shed, Nursery Bed, Mist Chamber, Manures, compost, vermicompost.

UNIT IV:

Green houses for tropical countries - Management, Pot culture, Pot mixture

UNIT V :

Harvesting, Packing, Storage and Marketing of Nursery Stock

TEXT BOOKS:

- 1. Kumar. N. 1997. Introduction to Horticulture. Rajalakshmi Publications Nagercoil, India.
- 2. Manibhushan Rao, K. 1991. Text Book of Horticulture. Macmillon India Ltd.

REFERENCES:

1. Edmond Musser and Andres. 1957. Fundamentals of Horticulture. McGraw Hill Book Co.

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

2. Gardener. 1996. Basic Horticulture. Mac Millan N.Y.

3. Lex Lauries and Victor H, Rice. 1979. *Floriculture – fundamentals and practices*. Mc. Graw Hill publishers N.Y.

4. Mukherjee. D. 1977. Gardening in India. Oxford IBH Publishing Co., New Delhi.

5. Randhawa. 1997. Ornamental Horticulture in India. Today and Tomorrow Publishers New Delhi.

6. Sandhu. M.K. 1989. Plant Propagation. Wiley Easter Ltd., New Delhi.

7. Sundararajan, J.S., Muthuswamy, J., Shanmugavelu, K.G. and Balakrishnan. R. 1995. *A Guide to Horticulture*. Thiruvenkadam Printers, Coimbatore. 60

8. Trevor Thorpe, Indra Hary. 1997. *Application of tissue culture to Horticulture*. International Society for Horticulture and Science. 447. Page 39-48.

Web link:

https://onlinecourses.nptel.ac.in/noc20_ce11/preview

Unit	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
	Introduction	• Define the basic concepts in plant propagation.	K1
Ι	Methods of Propagation- Sexual Vegetative.	 List out the major plant propagative methods. Explain the importance of plant propagative methods. 	K2 K5
II	Tissue culture – Methods of Plant multiplication <i>in vitro</i> .	• Define various <i>in vitro</i> and <i>in vivo</i> methods used in plant propagation.	K2
		• Make use of new techniques in the <i>in vitro</i> technology.	
	Basic parameters for propagation <i>in vitro</i> .	 Name various parameters influencing the successful plant <i>in vitro</i> propagation. Select the best planting 	K1
		• Select the best planting protocol for various plants.	11/2

SPECIFIC LEARNING OUTCOME (SLO):
		• Relate <i>in vitro</i> propagative methods in industrial scale	
III	Nursery Structures – Store House, Potting and Packing Shed, Nursery Bed, Mist Chamber, Manures, compost, vermicompost	 Define the parts of Nursery Structure. Develop new formulations for different plants in growth chamber. 	K1 K3
IV	Green houses for tropical countries – Management, Pot culture, Pot mixture	 Summarize the green house management systems. Analyze best suited practice. 	K2 K4
V	Harvesting, Packing, Storage and Marketing of Nursery Stock	 List out stages in Nursery techniques. Identify the best practice based on utility. 	K2 K3

Mapping Scheme for Course Code: U20BYPE1

U20BY	PO1	PO	PO	PO4	PO5	PO6	PO7	PO8	PO9	PSO	PSO	PSO	PSO
PE1		2	3							1	2	3	4
CO1	L	-	L	Η	L	-	L	L	Μ	L	L	Μ	-
CO2	L	-	L	-	-	L	L	-	L	-	Μ	Μ	-
CO3	Μ	L	-	Н	L	-	-	-	Μ	L	L	L	L
CO4	L	L	L	-	Μ	-	-	-	Μ	Μ	-	Η	L
CO5	Μ	L	-	Μ	-	L	Μ	L	-	Μ	Η	-	L
CO6	Μ	-	-	L	L	Μ	L	L	Μ	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

Course assessment:

- 1. Continuous assessment by seminars, assignments, records.
- 2. Model exam and End semester exam

NMEC II - MUSHROOM CULTIVATION

Semester IV Credits 2

Course Code: U16BYPE2 Hours/Week: 3

On completion of this course, the student will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Identify the types of mushrooms-edible and poisonous	K3	Ι
CO 2	Explain the scope of mushroom cultivation	K2	Π

CO 3	Experiment with various cultivation methods	K3	III
CO 4	Distinguish various methods of mushroom cultivation.	K4	IV
CO 5	Select the methods of harvesting, pest management in	K3	V
	mushrooms		
CO 6	Experiment with the process of mushroom cultivation	K3	Practical

SYLLABUS:

Unit I Introduction

Types of Mushroom-Identification of edible and poisonous Mushroom. Nutritive values life cycle of common edible mushroom.

Unit II

Scenario of Mushroom cultivation - Prospects and Scope of Mushroom Cultivation.

Unit III - Cultivation methods for different types of Edible mushroom (6 Hours)

Paddy straw mushroom (*Volvariella* Sp.) Button mushroom (*Agaricus* Sp.) Oyster mushroom (*Pleurotus* Sp.)

Unit IV

Cultivation, Pure Culture Preparation of Spawn and Compost and Spawn Running Cropping and its maintenance Harvesting and Marketing

Unit V

Protection and Management Disease & Pests of Mushroom and their control measures

TEXT BOOKS:

- 1. Gardner, 1996. Basic Horticulture Mac Milan N Y.
- 2. Tavis Lynch, 2018. *Mushroom Cultivation: An Illustrated Guide to Growing Your Own Mushrooms at Home*. Quarry Books; Ill edition. ISBN-13: 978-1631594045

REFERENCES

- 1. Manibhushan Rao, K. 1999. Text Book of Horticulture. Macmillon India Ltd.
- 2. Sharma, O. P. 1982. Test Book of Fungi. Tata McGraw-Hill Publishing C., New Delhi.

WEB LINK:

https://onlinecourses.swayam2.ac.in/nos20_ge07/preview

https://nios.ac.in/departmentsunits/vocational-education/stand-alone-courses/oystermushroom-production-technology.aspx

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

Unit	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
Ι	Introduction-Types of Mushroom -Identification of edible and poisonous Mushroom. Nutritive values life cycle of common edible mushroom.	 List out the edible mushrooms Identify the edible mushrooms 	K1 K3
Π	Scenario of Mushroom cultivation –Prospects and Scope of Mushroom Cultivation.	 Tell the scope of mushroom cultivation Explain the challenges in it. 	K1 K2
III	Cultivation methods for different types of Edible mushroom Paddy straw mushroom (<i>Volvariella</i> Sp.) Button mushroom (<i>Agaricus</i> Sp.) Oyster mushroom (<i>Pleurotus</i> Sp.)	 Apply various medium to grow mushroom Compare the growth of mushrooms in different medium. 	K3 K2
IV	Cultivation, Pure Culture Preparation of Spawn and Compost and Spawn Running Cropping and its maintenance Harvesting and Marketing	 Analyze the growth in different substratum Compare the cropping, harvesting and marketing of mushroom products 	K4 K2
Unit V	Protection and Management Disease & Pests of Mushroom and their control measures	 Identify the best practice for disease and pest control. List some of the measures. 	K3 K1
PRACTICAL	 Setting up of Cultivation room Preparation of Spawn, Spawning & Spawn running 3. Preparation of Compost 4. Harvest and Packing methods 	 Experiment with the cultivation of mushrooms. Illustrate different methods and mode of cultivation. 	K3 K2

Mapping Scheme for Course Code: U20BYPE2

U20BYPE2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	L	-	Η	-	-	-	L	L	-	L	L	L	-
CO2	Μ	-	Μ	-	-	L	L	-	L	-	L	Μ	-
CO3	L	L	-	-	L	-	-	-	Μ	Η	L	Η	L
CO4	-	-	L	L	Μ	-	-	-	Μ	Μ	-	Η	L
CO5	-	L	-	-	-	L	Μ	L	-	Μ	-	-	L
CO6	Μ	-	-	L	-	-	L	L	Μ	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

- 1. Continuous Assessment in Practical works, sectioning, record submission.
- 2. Practical tests, Records etc. (as applicable), Class tests, Model Exams.
- 3. End Semester Examination

Indirect

1. Course-end survey

Core V: PLANT PHYSIOLOGY BIOCHEMISTRY AND BIOPHYSICS

Course Code: U16BY505 Credits : 6

Semester : V Hours/Week : 7

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Develop an insight to the various plant water relations.	K6	Ι

CO 2	Discuss the mechanism of Photosynthesis.	K6	II
CO 3	Analyze the mechanism of Respiration and Nitrogen Metabolism	K4	III
CO 4	Evaluate the various growth and development processes in plants	K5	IV
CO 5	Compare the properties, structure and function of Primary and Secondary Metabolites.	K5	V
CO 6	Analyze the mechanism of photosynthesis, respiration, nitrogen metabolism and secondary metabolites	K4	II, - V

SYLLABUS:

UNIT 1 : IMPORTANCE OF WATER & MINERALS

(18 Hours)

1.1 Water – properties & role 1.1.1. Structure, Physical and chemical properties

1.1.2. Importance of Water

1.2 Osmotic & non-osmotic uptake of water

1.2.1. Diffusion – Role in Plants

1.2.2. Kinds of Solution – Hypotonic, Hypertonic and Isotonic

1.2.3. Osmosis – role in plants, Diffusion Pressure Deficit, Turgor Pressure, Osmotic Pressure and Significance.

1.2.6. Plasmolysis - definition, Incipient, Deplasmolysis, Advantages

1.2.7. Imbibition

1.2.8. Water potential & Osmotic relations of plant cells – Water potential, Osmotic Potential and Pressure Potential

1.2.9. Mechanism of Absorption of water

(i) Types – Active – Osmotic and Non-Osmotic absorption, Passive, Symplastic and Apoplastic absorption.

1.2.10. Factors affecting absorption of water.

1.2.11. Ascent of sap - Mechanism – Vital force theory, Root pressure theory, Physical force theory, Transpiration pull and Cohesion of water theory

1.3. Transpiration

1.3.1. Definition, Kinds

1.4. Stomatal transpiration

1.4.1. Structure and Mechanism of Stomatal Transpiration

(i) Opening & Closing of Stomata

(a) Starch-Sugar Interconversion theory (b) Synthesis of sugars or organic acids in guard cells

(c) ATP-driven Proton(H+) - K+ Exchange pump Mechanism in Guard cells

1.4.3. Advantages, factors affecting stomatal movements

1.4.4 Transpiration as a Necessary evil

1.5. Translocation of organic solutes & assimilates

1.5.1. Mechanism of Translocation through Phloem- Munch's mass flow hypothesis

1.6 Mineral nutrition of plants

1.6.1. Essential and Non-essential elements, Types- Essential – Major and Minor Elements function and its deficiency symptoms

1.7 Mineral salt absorption

1.7.1. Types – Passive and Active

1.8 Determination of essentiality of mineral elements

1.8.1. Solution Culture, Hydroponics and Aeroponics

UNIT II: PHOTOSYNTHESIS

2.1.0 Radiant energy & its role in photosynthesis

- 2.1.1. Photosynthesis definition, significance, Photosynthetic Apparatus
- 2.1.2. Photosynthetic Pigments, Location, Absorption and utilisation of light energy

2.2.0 Absorption Spectrum

2.2.1. Absorption Spectra of Chlorophylls, Carotenoids and Phycobilins

2.3.0 Red drop & Emerson's Enhancement effect

2.4.0 Photosystems

2.4.1. Types – Photosystem I, Photosystem II

2.5.0 Mechanism of Photosynthesis

- 2.5.1. Parts Light / Hill's Reaction, Dark Reaction / Blackman's reaction
- 2.5.2. Light Reaction

2.5.3. Photophosphorylation Types – Non-cyclic Photophosphorylation, Cyclic

Photophosphorylation

2.5.5. Dark Reaction - Pathway of C3 Cycle

2.6.0 Hatch and Slack Pathway

2.6.1 C4 – Dicarboxylic Acid Pathway and its Significance

2.7.0 CAM pathway

2.7.1 Crassulacean Acid Metabolism (CAM)

2.8.0 Photorespiration

2.8.1 Glycolate Pathway, Factors affecting photorespiration and Significance

UNIT III: RESPIRATION AND NITROGEN METABOLISM

(18 Hours)

3.1.0 Respiration

3.1.1. Definition, Organelle involved, kinds – Aerobic and Anaerobic

3.2.0 Glycolysis

3.2.1. Glycolysis / EMP Pathway

3.3.0 Krebs cycle

3.3.1. Krebs / TCA Cycle – pathway

3.4.0 Electron Transport System & Oxidative Phosphorylation

3.5.0 Nitrogen Metabolism

3.5.5 Nitrogen Cycle – **Biological, Industrial and Physical Nitrogen fixation** Steps – Proteolysis, Ammonification, Nitrification and Denitrification,

UNIT IV: PLANT GROWTH

(18 Hours)

(18 Hours)

4.1.0 Plant Growth

4.1.1. Growth-Definition, Growth curve

4.2.0 Auxins – Discovery and Physiological effects

4.3.0 Gibberellins – Discovery and Physiological effects

4.4.0 Kinetin – Discovery and Physiological effects

4.5.0 Role of Hormones and Florigen in Flowering

4.6.0 Senescence in Plants

4.6.1. Definition and its Types – Overall, Top, Deciduous and Progressive

4.7.0 Abscission of leaves - Definition and Mechanism

4.8.0 Photoperiodism

4.8.1. Definition, Duration of Photoperiod – Short Day, Long Day, Day Neutral, Long Short

Day, Short-Long Day Plants.

4.8.4. Importance of Photoperiodism

4.9.0 Phytochrome

4.9.1. Definition, Types- Red light absorbing form (PR), Far-red light absorbing Form (PFR)

4.10.0 Vernalization

4.10.1. Definition, Perception of the cold stimulus and other conditions.

4.11.0 Seed dormancy

4.11.1. Definition, factors causing dormancy

4.11.2. Artificial methods of breaking the dormancy of seeds

4.12.0 Seed Viability

4.12.1. Definition, kinds- Microbiotic, Mesobiotic and Macrobiotic, Viability test

4.13.0 Seed germinability

4.13.1. Physiology, Physiological condition of quiescent seed, of seed germination

UNIT V: BIOCHEMISTRY AND BIOPHYSICS

(18 Hours)

5.1.0 pH and its determination

5.1.1. pH-Definition, Measurement, Hydrogen ion Concentration and Importance

5.2.0 Buffers

5.2.1. Definition, Examples, Mechanism of Buffer action, Bicarbonate Buffer system

5.3.0 Chromatography

5.3.1. Principle, Types- Paper, TLC, Column, Affinity, Gas and HPLC and applications

5.4.0 Centrifugation

5.4.1. Principle, Types- Clinical, Ultra, Refrigerated and High speed

5.5.0 Carbohydrates

5.5.1. Definition, Structure, Types – Monosaccharides, Oligosaccharides and Polysaccharides, Function.

5.6.0 Lipids

5.6.1. Definition, Structure, Types – Simple, compound and derived, functions.

5.7.0 Proteins

5.7.1. Definition, Structure, Types – Simple, Conjugated and derived, functions

5.8.0 Elementary account on Secondary Metabolites

5.8.1. Definition, Structure, Occurrence and properties of the following secondary Metabolites – Flavonoids, Terpenoids, Alkaloids & Phenolics

Topics for Self-Study:

Self-Study topics	References
The Cell	https://www.nature.com/scitable/topicpage/what-is-a-cell-14023083/
	https://www.britannica.com/science/cell-biology
The Oxidative	https://www.sciencedirect.com/topics/biochemistry-genetics-and-
Enzymes	molecular-biology/oxidative-enzyme
	https://link.springer.com/chapter/10.1007/978-3-642-66279-9_22
Role of Nucleic	https://www.ncbi.nlm.nih.gov/books/NBK21634/#:~:text=In%20the
Acids in Protein	%20process%20of%20transcription,amino%20acids%20during%2
synthesis	<u>Oprotein%20synthesis</u> .
	https://link.springer.com/chapter/10.1007/978-1-4684-0294-0_10
The fate of Light	https://link.springer.com/article/10.1023/B%3APRES.0000040446.87
energy	<u>305.f4</u>
	http://www.plantphysiol.org/content/176/2/1171
Electro-Osmosis	https://link.springer.com/referenceworkentry/10.1007%2F978-3-
	<u>642-40872-4_2079-</u>
	<u>2#:~:text=Electro%2Dosmosis%20is%20the%20movement,%2C%2</u>
	Umicrochannel%2C%20or%20porous%20material.
	https://www.sciencedirect.com/topics/chemical-
	engineering/electroosmosis

TEXT BOOKS:

1. Jain, V.K. 1997. Fundamentals of Plant Physiology. S. Chand and Co., New Delhi.

2. Pandey, S.N. 2005. Plant Physiology. Vikas publishing House (P) Ltd., New Delhi.

3. Srivastava, H.N. 1998. Plant Physiology. Pradeep Publications, Jalandhar, India.

4. Verma, S.K. 1995. A text book of Plant Physiology. S. Chand and Co., New Delhi.

5. Srivastava, H.N. 1999. Elements of Biochemistry. Rastogi Publications, Meerut, India.

6. Trehan, K. 1987. Biochemistry. Wiley Eastern Ltd., New Delhi.

7. Arumugam, N. 1993. Biochemistry. Saras publications, Nagercoil, Tamilnadu.

REFERENCE BOOKS:

1. Lincoln Taiz and Eduardo Zeiger. 2010. *Plant Physiology* 5th Edition. Sunderland, Massachusetts, USA.

2. Devlin, R.M. 1969. *Plant Physiology*. Holt, Rinechart & Winston & Affiliated East. West press (p) Ltd. New Delhi.

3. Noggle, R. and Fritz. 1986. *Introductory Plant Physiology*. Prentice Hall of India. New Delhi.

4. Harborne, J.B. 1997. *Plant Biochemistry*. Harcourt Asia (P) Ltd., India and Academic Press – Singapore.

5. Jayaraman, J. 1981. Laboratory Manual of Biochemistry. Wiley Eastern Ltd., New Delhi.

WEB LINKS:

https://www.classcentral.com/course/swayam-plant-physiology-and-plant-tissue-culture-14238

https://onlinecourses.swayam2.ac.in/cec19_bt09/preview

Unit	Content	Learning Outcome	Highest
			Bloom
			taxonomic
			level of
			transaction
Ι	Importance of V	Vater and Minerals	I
1.1	Water – properties & role	• List the Physico-	K4
	Structure, Physical and chemical properties.	chemical properties of water	
	Importance of Water	• Summarize the importance of water	K2
1.2	Osmotic & non-osmotic uptake of water Diffusion – Role in Plants Kinds of Solution – Hypotonic, Hypertonic and Isotonic Osmosis – role in plants, Diffusion	 Define – Diffusion, Osmosis and Plasmolysis 	К1
	Pressure Deficit, Turgor Pressure.		K4
	Osmotic Pressure and Significance.	• Compare the types	
		of water absorption	K4
		• Distinguish the	

	Plasmolysis – definition, Incipient, De-plasmolysis, Advantages		Osmotic and Non- osmotic active	
	Imbibition	•	absorption Interpret the various	K6
	Water potential & Osmotic relations of plant cells – Water potential, Osmotic Potential and Pressure Potential		theories related with Ascent of Sap	
	Mechanism of Absorption of water			
	Types – Active – Osmotic and Non- Osmotic absorption, Passive, Symplastic and Apoplastic			
	absorption.			
	Factors affecting absorption of water.			
	Ascent of sap –Mechanism – Vital force theory, Root pressure theory, Physical force			
	theory, Transpiration pull and Cohesion of water theory			
1.3	Transpiration	•	Recall the Kinds of	K1
			Trongnirotion	
	Definition, Kinds		Transpiration	
1.4	Definition, Kinds Stomatal Transpiration	•	Elaborate the	К2
1.4	Definition, Kinds Stomatal Transpiration Structure and Mechanism of Stomatal Transpiration	•	Elaborate the Mechanism of Stomatal Movements.	K2
1.4	Definition, Kinds Stomatal Transpiration Structure and Mechanism of Stomatal Transpiration (i) Opening & Closing of Stomata	•	Elaborate the Mechanism of Stomatal Movements.	K2
1.4	Definition, Kinds Stomatal Transpiration Structure and Mechanism of Stomatal Transpiration (i) Opening & Closing of Stomata (a) Starch-Sugar Interconversion theory (b) Synthesis of sugars or organic acids in guard cells	•	Elaborate the Mechanism of Stomatal Movements.	K2
1.4	Definition, Kinds Stomatal Transpiration Structure and Mechanism of Stomatal Transpiration (i) Opening & Closing of Stomata (a) Starch-Sugar Interconversion theory (b) Synthesis of sugars or organic acids in guard cells (c) ATP-driven Proton(H+) – K+ Exchange pump Mechanism in Guard cells	•	Elaborate the Mechanism of Stomatal Movements.	К2

1.5	Translocation of organic solutes & assimilatesMechanism of Translocation through Phloem- Munch's mass flow hypothesis	• Prove the translocation of Organic solutes and assimilates in the Phloem Column.	K5
1.6	Mineral nutrition of plants Essential and Non-essential elements, Types- Essential – Major and Minor Elements function and its deficiency symptoms	• Determine and Evaluate the Deficiency symptoms and role of Major and Minor elements.	K5
1.7	Mineral salt absorption Types – Passive and Active	• Distinguish the Types of Mineral salt absorption	K4
1.8	Determination of essentiality of mineral elements Solution Culture, Hydroponics and Aeroponics	• Determine the essentiality of Mineral elements	K5
II	Photosynthesis		
2.1	Radiant energy & its role in	• Summarize the	K2
	 photosynthesis Photosynthesis – definition, significance, Photosynthetic Apparatus Photosynthetic Pigments, Location, Absorption and utilisation of light energy 	Photosynthetic apparatus and its role in the capturing of light energy	
2.2	photosynthesisPhotosynthesis – definition, significance, Photosynthetic ApparatusPhotosynthetic Pigments, Location, Absorption and utilisation of light energyAbsorption SpectrumAbsorption Spectra of Chlorophylls, Carotenoids and Phycobilins	 Photosynthetic apparatus and its role in the capturing of light energy Interpret the Absorption spectra of Photosynthetic Pigments. 	K5

2.4	Photosystems Types – Photosystem I, Photosystem II	• Distinguish the kinds of Photosystem	K4
2.5	Mechanism of Photosynthesis Parts – Light / Hill's Reaction, Dark Reaction / Blackman's reaction Light Reaction PhotophosphorylationTypes – Non- cyclic Photophosphorylation, Cyclic Photophosphorylation Dark Reaction - Pathway of C3 Cycle	 Elaborate the Mechanism of Light reaction Discuss the Light Independent Phase of Photosynthesis. 	K6 K6
2.6	Hatch and Slack Pathway C4 –Dicarboxylic Acid Pathway and its Significance	• Justify a plant can photosynthesize even in presence of very low concentration of CO ₂ .	K5
2.7	CAM pathway Crassulacean Acid Metabolism (CAM)	• Criticize the role of CAM pathway in Crassulaceae members.	K5
2.8	Photorespiration Glycolate Pathway, Factors affecting photorespiration and Significance	 Discuss the inter- organelle relationships of Chloroplast, Peroxisome and Mitochondria 	K6
III	Respiration and Nitrogen M	etabolism	
3.1	Definition, Organelle involved, kinds – Aerobic and Anaerobic	• Compare the aerobic and anaerobic respiration	K2
3.2	Glycolysis - Glycolysis / EMP Pathway	• Analyse the glycolysis pathway	K4
3.3	Krebs cycle Krebs / TCA Cycle – pathway	 Assume the Krebs / TCA Cycle – pathway 	K4

3.4	Electron Transport System & Oxidative Phosphorylation	• Analyze the Electron Transport System & Oxidative Phosphorylation	K4
3.5	Nitrogen Metabolism Nitrogen Cycle– Biological, Industrial and Physical Nitrogen fixation Steps – Proteolysis, Ammonification, Nitrification and Denitrification,	 Discuss the Nitrogen Metabolism and Nitrogen Cycle 	K2
IV	Plant	Growth	
4.1	Plant GrowthGrowth-Definition, Growth curve	• Analyse the plant growth curve	K4
4.2	Auxins – Discovery and Physiological effects	• Examine the Discovery and Physiological effects of auxins	K4
4.3	Gibberellins – Discovery and Physiological effects	• List the Physiological effects of gibberellins	K4
4.4	Kinetin – Discovery and Physiological effects	• Identify the physiological role of kinetin	К3
4.5	Role of Hormones and Florigen in Flowering	• Determine the role of Hormones and Florigen in Flowering	K5
4.6	Senescence in Plants Definition and its Types – Overall, Top, Deciduous and Progressive	• Illustrate the Senescence in Plants	K2
4.7	Abscission of leaves - Definition and Mechanism	• Identify the Abscission of leaves	К3
4.8	 Photoperiodism 4.8.1. Definition, Duration of Photoperiod – Short Day, Long Day, Day Neutral, Long Short L Day, Short-Long Day Plants. 	 Analyze the Photoperiod – Short Day, Long Day, Day Neutral, Long Short L Day, Short- Long Day Plants. 	K4

4.9	Phytochrome - Definition, Types-	• Assume the	K4
	Red light absorbing form(PR), Far-red	Phytochrome	
4.10	Vernalization	• Inspect the	K4
	Definition, Perception of the cold	vernalization	
	stimulus and other conditions		
4.11	Seed dormancy	• Identify the Seed	K3
	Definition, factors causing dormancy,	dormancy Artificial methods of breaking	
	Artificial methods of breaking the	the dormancy of	
	dormancy of seeds	seeds	
4.12	Seed Viability	• Explain the Seed	K2
	Definition, kinds- Microbiotic,	Viability,	
	Mesobiotic and Macrobiotic, Viability	Microbiotic.	
	test	Mesobiotic and	
		Macrobiotic,	
4.13	Seed germinability	Make use of Seed	К3
	Physiology Physiological condition	germinability,	
	of quiescent seed, of seed germination	Physiology,	
	1	condition of	
		quiescent seed, of	
X 7	DIOCHEMICTR	seed germination	
v	BIOCHEWISTK	I AND DIOPHISICS	
5.1	pH and its determination	• Describe the uses of	K5
	- pH-Definition, Measurement,	• Explain the	
	Hydrogen ion Concentration and	importance of H+	K2
5.2	Importance	ions	
5.2	Buffer		
	-Definition, Examples, Mechanism of	• Explain the buffer	
	Buffer action, Bicarbonate Buffer	actions	K2
	system		
5.3	Carbohydrates	Compare the	K5
		Monosaccharides,	

	Definition, Structure, Types – Monosaccharides, Oligosaccharides and Polysaccharides, Function.	Oligosaccharides and Polysaccharides, Function.	
5.4	Lipids - Definition, Structure, Types – Simple, compound and derived, functions.	• Estimate the Structure, Types – Simple, compound and derived, functions	K5
5.5	Proteins Definition, Structure, Types – Simple, Conjugated and derived, functions	• Determine the Structure, Types Simple, Conjugated and derived, functions	К5
5.6	Enzymes Definition, Nature, Structure & properties Mechanism of Enzyme action – Lock & Key theory & Induced Fit theory	 Explain the properties Mechanism of Enzyme action – Lock & Key theory & Induced Fit theory 	К5
5.7	Elementary account on Secondary Metabolites Definition, Structure, Occurrence and properties of the following secondary Metabolites – Flavonoids, Terpenoids, Alkaloids& Phenolics	• Analyze Elementary account on Secondary Metabolites	K4

Mapping Scheme for the Course Code: U16BY505

U16BY5 05	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	М	М	-	-	L	L	-	-	-	L	-	Н	М
CO2	М	М	-	-	L	L	-	-	-	М	-	Н	М
CO3	М	L	L	-	Н	L	-	-	-	М	-	Н	М

CO4	М	L	L	-	М	L	-	L	-	М	-	Н	М
CO5	М	L	L	-	-	L	-	-	-	М	-	Н	Н
CO6	М	-	-	-	М	L	-	-	-	М	-	Н	М

L-Low(1) M-Medium(2) H-High(3)

Course Assessment Methods:

1. Continuous Assessment by conducting Class test, Group Discussion and Quiz.

2. Assessment also done through Seminar Presentation, submission of Assignments and Model Making and Model exams.

3. End Semester Examination

CORE VI: CELL BIOLOGY, GENETICS AND EVOLUTION

Semester : V Credits :6

Course Code: U16BY506 Hours/Week: 7

Course Outcome

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Evaluate the basic principles of inheritance in plants, allelic and non-allelic gene, linked gene and recombination gene	K5	I
CO 2	Discuss the cell structure	K6	Ι
CO 3	Construct and modify personal and family pedigree charts.	K6	I and II
CO 4	Analyze crops to express hybrid vigour, Describe the necessity of breeding programs, Imparting knowledge on means of exploiting plants through breeding	K4	III, IV
CO 5	Estimate the necessity of Plant genetic resources, IPR protecting farmers and breeders	K5	V
CO 6	Appraise how humans have flourished due to breeding and domestication of plants	K5	III, IV, V

SYLLABUS:

UNIT I- CELL AND ITS INCLUSIONS

1.1 Cell- Definition and types- Prokaryotic cell and Eukaryotic cells

1.2 Cell theory and its significance

1.3 Cell Wall- Bacterial (a) Gram positive and (b) Gram negative cell wall

1.4 Plant cell wall - Ultra structure and functions

1.5 Cytoplasm- physical, chemical and biological properties

1.6 Plasma membrane - Ultrastructure, Models (Sand wich and Fluid mosaic model) functions

1.7 Endoplasmic Reticulum – Ultrastructure, types and functions

1.8 Mitochondria- ultrastructure and functions

1.9 Plastids- Types and functions

2.0 Chloroplasts - distribution, Ultrastructure and functions

2.1 Golgi Apparatus - Ultrastructure and functions

2.2 Ribosomes- Ultrasturcture and functions- (a) Prokaryotic Ribosomes (70S)(b) Eukaryotic Ribosomes (80S)

UNIT II- NUCLEUS

2:1 Nucleus – Ultrastructure and functions

2.2 Chromosomes- types - Euchromatin and Heterochromatin (a) Facultative and (b) Constitutive heterochromatin

2.3 Special types of Chromosomes- (a) Lampbrush chromosomes (b) Polytene chromosomes

2.4 Components and Organization of Nucleic acid- DNA structure and Watson and crick's

double helical DNA model and types- DNA -A, B and Z form of DNA

2.5. Ribonucleic acid -mRNA,rRNA,tRNA - Clover leaf model

2.6 Chromosomes

2.7 Cell division- Amitosis, Mitosis and Meiosis- Occurrence, Processes and Significances.

UNIT-III -MENDELISM AND GENIC INTERACTION (18 Hours)

3:1 Definition of Genetics, Scope and importance of genetics

3:2 Mendel's Laws of inheritance.- Law of segregation, Law of dominance and Law of independent assortment

(18 Hours)

3:3 Monohybrid cross, dihybrid cross, Back cross and Test cross

3:4 Variation in Dominance- Incomplete dominance, Co-dominance, Lethal factor in plants.

3:5 Gene Interaction- Complementary gene 9:7, Supplementary genes, Duplicate genes.

3:6 Epistasis-Definition and types- Dominant Epistasis (12:3:1), Recessive Epistasis (9:3:4)

3:7 Multiple alleles- Polygenic inheritance- Definition, Kernel Colour in wheat, Skin colour in human

3:8 Blood Group in human, Rh factor.

Unit IV- LINKAGE AND CROSSING OVER

4:1 Linkage - Definition and types- complete and incomplete linkage and its Significance of linkage

4:2 Crossing over - Definition, Types –Single, double and Multiple crossing over and its significance

4:3 Crossing over - Theories about the mechanisms of crossing over- Stern's experiment,

Tetrad analysis and Crighton and McClintocks experiment

4:4 Linkage Mapping

4:5 Cytoplasmic inheritance– Kappa particle (*Paramaceium*) and Plastid inheritance in *Mirabilis*.

4:6 Sex linkage – Definition and *Drosophilla* (Bar eye) and human (colour blindness)

4:7 Sex determination -Definition and Drosophilla and human

4:8 *Neurospora* Genetics

UNIT-V- EVOLUTION

5.1 Definition of Evolution - Inorganic, Organic Evolution

5.2 Theories of Evolution of organic forms- Theory of Eternity, Theory of Special creation, Cosmozoic theory, Catastrophism and Modern theory

5.3 Theories of Evolution- inheritance of acquired characters (Lamarckism) and natural selection (Darwinism)

5.4 Modern Synthetic Theory

5.5 Isolation - Types of Isolation and Role.

(18 Hours)

(18 Hours)

5.6 Speciation–Definition, Gradual Speciation - Allopatric Speciation and Sympatric Speciation.

S. No	Торіс	Web links
1	Chromosomal rearrangement	https://www.sciencedirect.com/topics/biochemistry-genetics- and-molecular-biology/chromosomal-rearrangement
2	Karyotype	https://www.genome.gov/genetics- glossary/Karyotype#:~:text=A%20karyotype%20is%20an%20in dividual's,numbers%20or%20structures%20of%20chromosomes
3	convergent evolution	https://www.sciencedirect.com/topics/agricultural-and- biological-sciences/convergent-evolution
4	genetic drift	https://www.sciencedirect.com/topics/neuroscience/genetic-drift
5	instant speciation	http://www.chemistrylearning.com/instantaneous-speciation/
6	Genetic Variability	https://www.sciencedirect.com/topics/medicine-and- dentistry/genetic-variability
7	Pedigree Method,	https://www.slideshare.net/ShekhAlisha/pedigree-method-of- plant-breeding
8	Bulk Method,	https://www.slideshare.net/pawannagar8/bulk-method-pedigree- method-ampline-breeding
9	Plant Uniformity and Stability	https://link.springer.com/article/10.1007/s001220100710

TOPICS FOR SELF-STUDY:

TEXT BOOKS:

1. Veer Bala Rastogi, 2019. Genetics IV Edition, Scientific International Pvt Ltd, New Delhi

2. Chahal, G.S. and Gosal, S.S. 2015. Principles and Procedures of Plant Breeding, -

Biological and Conventional Approaches. New Delhi: Narosa Publishing House Pvt. Ltd.

4. Daniel L Harti. 2014. Essential Genetics. Jones and Bartlett, Unites States of America.

5. Mann Rosanna. 2017. Human Genetics and Genomics, Callisto publish.

6. Singh, M.P. and Sunil Kumar. 2016. *Genetics and Plant Breeding*, Vol. I & II New Delhi, APH Publishing Corporation.

7. Verma, P.S, V.K. Agarwal. 2014. *Cell Biology, Genetics, Molecular Biology, Evolution and Ecology*, S. Chand, New Delhi.

8. Benjamin, L. 2014. Genes IX. Lewin Oxford University Press, Oxford, New York.

REFERENCE BOOKS:

1. Meyyan, R.P. 2010. Fundamental of Genetics, Saras Publication, Nagarcoil.

Web Links:

https://www.plantbreeding.org/content/online-resources-for-plant-breeding-education

https://onlinecourses.swayam2.ac.in/cec20_bt03/preview

Unit	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
1	CEL	L BIOLOGY	
1.1	Cell- Definition and types- Prokaryotic cell and Eukaryotic cells	 Explain the structure and functions of cells Analyse the functions of each cell organelles 	K2 K4
1.2	Cell theory and its significance	• Define the theories of cell division	K2

1.3	Cell Wall- Bacterial (a) Gram positive and (b) Gram negative cell wall	• Discuss the cell wall differences	K6
1.4	Plant cell wall – Ultra structure and functions	• Discuss the ultra structure of plant cellwall	K6
1.5	Cytoplasm- physical, chemical and biological properties	• Explain the cytoplasmic compositions	K5
1.6	Plasma membrane – Ultrastructure, Models (Sand wich and Fluid mosaic model) functions	• Define the theories related to membranes	K2
1.7	Endoplasmic Reticulum – Ultrastructure, types and functions	• Imagine the functions of ER	K4
1.8	Mitochondria- ultrastructure and functions	• Analyse the structure	K4
1.9	Plastids- Types and functions	• Explain the function and structure	K5
1.10	Chloroplasts – distribution, Ultrastructure and functionS	• Analyse the structure of chloroplasts	K4
1.11	Golgi Apparatus – Ultrastructure and functions	• Explain the structure	K5
1.12	Ribosomes- Ultrasturcture and functions- (a)	• Differentiate their role in protein synthesis	K4

	Prokaryotic Ribosomes		
	(70S)(b)80 S		
Π			
2.0	Nucleus – Ultrastructure and functions	• Explain the structure of Nucleus	K2
2.1	Chromosomes-types-EuchromatinandHeterochromatin(a)FacultativeandConstitutiveheterochromatin.	• Analyse the chromosome types	K4
2.2	SpecialtypesofChromosomes-(a)1Lampbrushchromosomes(b) Polytenechromosomes	• Define the structure of special type of chromosomes	K2
2.3	Components and Organization of Nucleic acid– DNA structure and Watson and crick's double helical DNA model and types- DNA -A, B and Z form of DNA	• Differentiate the structure and function of genetic materials	K4
2.4	Ribonucleicacid-mRNA,rRNA,tRNA-Clover leaf model	• Explain the structure of RNAs	K5
2.5	Chromosomes	• Tell the chromosome structure	K1

2.6	Cell division- Amitosis, Mitosis and Meiosis- Occurrence, Processes and Significances.	• Discuss the cell divisions	К6
III		GENETICS	
3.1	Definition of Genetics, Scope and importance of genetics	 Recall the concepts of genetics Classify the scope and importance genetics 	K4
3.2	Mendel's Laws of inheritance Law of segregation, Law of dominance and Law of independent assortment	 Prove the Mendel's Law. Distinguish between law of dominance and Law of independent assortment 	K5
3.3	Monohybrid cross, dihybrid cross, Back cross and Test cross	 Explain monohybrid and dihybrid cross. Make up the back cross and test cross 	K6
3.4	Variation in Dominance- Incomplete dominance, Co- dominance, Lethal factor in plants	 Determine the incomplete and codominance Explain lethal factor 	K5
3.5	Gene Interaction- Complementary gene 9:7, Supplementary genes, Duplicate genes.	• Make use of the gene interaction with a allelic and non allelic gene interaction.	К3
3.6	Epistasis-Definition and types- Dominant Epistasis	 Define Epistasis Interpret dominant and recessive epistasis and its significance 	K5

3.7	 (12:3:1), Recessive Epistasis (9:3:4) Multiple alleles- Polygenic inheritance- Definition, Kernel Colour in wheat, Skin colour in human 	 Recall the multiple allele. Prove kernel colour in wheat and skin colour in human 	K5
3.8	Blood Group in human and Rh factor.	 List out the types of blood groups Illustrate the blood groups in human and Rh factor 	K2
	Unit IV- LINKAGE	AND CROSSING OVER	
4.1	Linkage - Definition and types- complete and incomplete linkage and its Significance of linkage	 Define Linkage Explain the characteristic of linkage. Importance of complete and incomplete linkage 	K5
4.2	Crossing over - Definition, Types –Single, double and Multiple crossing over and its significance	 What is crossing over Explain they types of crossing over and its significance 	K5
4.3	Crossing over - Theories about the mechanisms of crossing over- Stern's experiment, Tetrad analysis and Creighton and McClintocks experiment	Prove crossing over theories and its mechanisms	K6
4.4	Linkage Mapping	• Construct the Linkage mapping.	K3

		• Solve the sum of gene mapping	K6
4.5	Cytoplasmic inheritance– Kappa particle (<i>Paramaceium</i>) and Plastid inheritance in <i>Mirabilis</i> .	 Define Plasmagene. Support the kappa particle and plastid inheritance in Mirabilis. 	K5
4.6	Sex linkage – Definition and <i>Drosophilla</i> (Bar eye) and human (colour blindness)	 Make use of sex linkage in <i>Drosophila</i> and human, Solve the colour blindness and haemophilia through sex linkage 	K3 K6
4.7	Sex determination - Definition and <i>Drosophilla</i> and human	• Classify the sex determination and <i>Drosophila</i> and Human.	K4
4.8	Neurospora Genetics	• Explain Neurospora in genetics	K4
	UNIT- V -	EVOLUTION	
5.1	Definition of Evolution - Inorganic, Organic Evolution	 Define Evolution Categorize the evolution	K1 K4
5.2	Theories of Evolution of organic forms- Theory of Eternity, Theory of Special creation, Cosmozoic theory, Catastrophism and Modern theory	 Theories of evolution Classify the evolution of organic forms 	K6 K2

5.3	Theories of Evolution- inheritance of acquired characters (Lamarckism) and natural selection (Darwinism)	 Discuss Lamarckism and Darwinism 	K6
5.4	Modern Synthetic Theory	• Explain modern synthetic theory	K5
5.5	Isolation - Types of Isolation and Role	• List out the types of Isolation and its role	K4
5.6	Speciation–Definition, Gradual Speciation - Allopatric Speciation and Sympatric Speciation.	Illustrate speciation and its types	K2

Mapping Scheme for the Course Code: U16BY506

U16BY506	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	Μ	L	-	-	Н	L	-	L	Н	Μ	Н	-
CO2	Н	Μ	-	-	Μ	-	-	-	Μ	Η	L	Η	L
CO3	Η	L	L	-	Μ	-	-	-	Μ	Μ	-	Η	L
CO4	Μ	L	-	Μ	-	L	Μ	L	-	Μ	Η	-	L
CO5	Н	-	-	-	-	-	L	Μ	Μ	Η	Μ	-	Μ
CO6	Η	Μ	-	-	Μ	-	-	Η	Η	H	H	L	H

L-Low M- Medium H-High

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission. Practical tests, Records etc. (as applicable), Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

MAJOR PRACTICAL: V – PLANT PHYSIOLOGY, BIOCHEMISTRY, BIOPHYSICS, CELL BIOLOGY, GENETICS & EVOLUTION

Semester : V

Credits : 2

Course Code : U16BY5P5 Hours/Week : 3

Course Outcome:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Experiment with plant cells in relation to water.	K3	Ι
CO 2	Estimate the amount of sugar & lipid concentration in a given plant tissue.	K5	Ι
CO 3	Estimate the rate of photosynthesis under various environmental conditions.	K5	Ι
CO 4	Solve the practical problems in Mendelian Genetics, Gene Interaction & Gene Mapping.	K6	II
CO 5	Demonstrate the life cycle of Drosophila	K2	Π
CO 6	Experiment with Hybridization & Emasculation techniques, Evaluate the Pollen viability & germinability	K5	III

SYLLABUS:

PHYSIOLOGY EXPERIMENTS TO BE PERFORMED BY EACH STUDENT (21 Hours)

1. Estimation of sugars (Colorimetric).

- 2. Estimation of lipids (Gravimetric).
- 3. Demonstration of Osmosis by Potato Osmoscope Method.
- 4. Determination of stomatal frequency and index.
- 5. Determination of the ratio between the stomatal and cuticular transpiration by Cobalt

Chloride Method.

- 6. Comparison of stomatal and cuticular transpiration.
- 7. Determination of absorption and transpiration ratio in plants.
- 8. Separation of plant pigments by paper chromatography.
- 9. Determination of photosynthetic rate in water plants under different CO2 concentrations.
- 10. Measurement of O2 evolution under different colour lights using Wilmott's bubbler.
- 11. Qualitative test for phytochemicals Starch, sugar, protein, Amino acid, Phenols,

Alkaloids, flavonoids, Saponins and tannins.

GENETICS

(18 Hours)

a. Problems based on Mendel's Laws of inheritance

b. Problems based on Interaction of Genes-Allelic and Non-Allelic

c. Problems based on Gene Mapping

d. Life Cycle of Drosophila (Culture Studies) - Demonstration

e. Construction and Analysis of Family Pedigree Charts

CYTOLOGY-

(6 Hours)

Study on cell structures Study on mitosis

TEXT BOOKS:

Taiz, L., Zeiger, E., 2010. *Plant Physiology*. Sinauer Associates Inc., U.S.A. 5th Edition.
 Hopkins, W.G., Huner, N.P. 2009. *Introduction to Plant Physiology*. John Wiley & Sons, U.S.A. 4th Edition.

3. Bajracharya, D. 1999. *Experiments in Plant Physiology- A Laboratory Manual*. Narosa Publishing House, New Delhi.

4. Gardner EJ, Simmons MJ, Snustad DP. 2008. Principles of Genetics. 8th Ed. Wiley India.

5. Snustad, D.P. and Simmons, M.J. 2010. *Principles of Genetics*, John Wiley & Sons Inc., India. 5th edition.

6. Klug WS, Cummings MR, Spencer, C, Palladino, M. 2011. *Concepts of Genetics*, 10th Ed., Benjamin Cummings

7. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. 2010. *Introduction to Genetic Analysis*. W. H. Freeman and Co., U.S.A. 10th edition.

REFERENCE BOOKS:

1. Pierce BA. 2011. *Genetics: A Conceptual Approach*, 4th Ed., Macmillan Higher Education Learning 6. Singh, B.D. 2005. *Plant Breeding: Principles and Methods*. Kalyani Publishers. 7th edition.

2. Chaudhari, H.K. 1984. *Elementary Principles of Plant Breeding*. Oxford – IBH. 2nd edition.

3. Acquaah, G. 2007. *Principles of Plant Genetics & Breeding*. Blackwell Publishing. **Web link:**

https://onlinecourses.swayam2.ac.in/cec20_bt03/preview

Unit	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
Ι	Pla	nt Physiology	
Ι	1.Estimation of sugars (Colorimetric).	• Estimate the Concentration of Sugar in the given Plant	K5

	tissue	
2.Estimation of lipids (Gravimetric).	• Estimate the Concentration of Lipid present in the Plant tissue	К5
3.Demonstration of Osmosis by Potato Osmoscope Method.	• Experiment with Potato Osmoscope.	К3
4.Determination of stomatal frequency and index.	• Estimate the stomatal frequency and index	К5
5.Determination of the ratio between the stomatal and cuticular transpiration by Cobalt Chloride Method.	Determine the rate of Stomatal and cuticular transpiration	K5
6.Determination of absorption and transpiration ratio in plants.	• Estimate the transpiration and absorption rate by using TA Balance apparatus	K5
7.Separation of plant pigments by paper chromatography.	• Estimate the Rf value of Plant Pigments	K5
8.Determination of photosynthetic rate in water plants under different CO2 concentrations.	• Estimate the Photosynthetic rate under different CO2 concentrations	K5
9.Measurement of O2 evolution under different color lights using Wilmott's bubbler.	• Measure the Photosynthetic rate by using Wilmott's bubbler.	K5
 10.Qualitative test for phytochemicals Starch, sugar, protein, Amino acid, Phenols, Alkaloids, flavonoids, Saponins and tannins. 	• Identify the Phytochemical compound in the given Plant extracts.	К3

II	Genetics					
	1.Problems based on Mendel's Laws of inheritance	• Solve the Problems related with Monohybrid cross and Dihybrid Cross	К6			
	2.Problems based on Interaction of Genes-Allelic and Non-Allelic	• Solve the Problems related with gene interaction	К6			
	3.Problems based on Gene Mapping	• Solve the Linkage Mapping	K6			
	4.Life Cycle of <i>Drosophila</i> (Culture Studies) - Demonstration	• Demonstrate the Life Cycle of <i>Drosophila</i>	K2			
	5.Construction and Analysis of Family Pedigree Charts	Solve Family Pedigree problems	K6			
III	CE	LL BIOLOGY				
1	Study of plant cells	• Explain the structure of plant cells in detail	K2			

Mapping Scheme for the Course Code: U16BY5P5

U16BY5P5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	-	-	-	-	-	L	-	-	-	-	Н	L
CO2	Н	-	-	-	-	-	L	-	-	-	-	Η	Н
CO3	Μ	-	-	-	L	-	L	-	-	-	-	Η	L
CO4	Μ	-	-	-	-	Μ	-	-	-	-	-	-	-
CO5	L	-	-	-	-	-	-	-	-	-	-	-	-
CO6	Μ	-	-	L	-	Μ	-	-	-	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

Assessment / Evaluation:

1. Continuous Assessment by conducting Model Exams, Demonstration Experiments, Written test on Protocols.

2. Assessment also done through solving Genetics problems, Hands on Techniques, Lab Attendance and Practical Record work.

2. End Samastar Practical Examination

3. End Semester Practical Examination

Elective-I: BIOSTATISTICS, COMPUTER APPLICATION AND BIOINFORMATICS

Course code: U16BY5:1 Semester: V

Hours/Week: 6 Credits: 5

Course Outcomes:

On completion of the course, the student will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Apply the process safety and describe the benefits of process safety to an General Lab safety and to society	K2	1
CO 2	Explain Instrumentation, separation and identification of compounds by electrophoresis technique	K5	II
CO 3	Explain Instrumentation, Working mechanism and Application of PCR.	K4	II
CO 4	Apply the knowledge about the various aspects of Centrifugation and Microscopy for identification, and characterization of compounds	К3	III

CO 5	Explain the varies concepts of chromatography techniques	K5	IV
CO 6	Describe the concept of Spectrophotometry, Tracer techniques	K2	V

SYLLABUS:

Unit I: BASIC CONCEPT OF BIOSTATISTICS

1.1. Biostatistics - Definition - Scope

1.2. Data - Definition -Types- (a) Primary(b) Secondary, Collection of data

1.3. Population - Definition - Types of population - (a) Finite population (b) Infinite population

1.4. Samples -Definition - Sampling techniques -Random sampling techniques

1.5. Frequency distribution - Definition - Discrete method & Continuous method- Frequency graphs

1.6. Statistical table - Rules, Organization and types of table

1.7. Graphical Representation of Data - Importance and general guidelines - Types of graphs - (a) Bar (b) Simple(c) Multiple(d) Percentage (e) Subdivided (f) Pie diagram (g) Pictogram (h) Cartogram

1.8. Central Tendency -Mean (a) Definition (b) Merits and demerits (c) Problems - Median (a) Definition (b) Merits and demerits (c) Problems - Mode (a) Definition (b) Merits and demerits (c) Problems

Unit II: DESCRIPTIVE AND INFERENTIAL STATISTICS

2.1. Measure of dispersion - Definition - Types of dispersion (a) Absolute measure of dispersion

- (b) Relative measure of dispersion
- 2.2. Probability Probability scale, Definition, Types and application of biological problems
- 2.3. Binomial distribution Introduction, Definition and Properties of binomial distribution

2.4. Poisson Distribution - Introduction, Definition and Properties of Poisson distribution

2.5. Normal distribution - Introduction, Definition and Properties

2.6. Test of Significance - Introduction, Definition, Procedure and application of chi-square test

UNIT- III- INTRODUCTION TO COMPUTERS

.1. Computer application in biology

3.1.1. Introduction, Advantages, Evolution and Generations of Computer

3.2. Organization of a computer

3.2.1. Input devices- (a) Keyboard (b) Mouse

3.2.2. Output devices - (a) Monitors (b) Printers

- 3.3. Computer Memory RAM and ROM
- 3.4. Storage devices Floppy, Compact and Hard Disc
- 3.5. Central Processing Unit

(15 Hours)

of diama i

(15 Hours)

(15 Hours)

3.6. Software

3.7. Hardware

Unit IV: COMPUTER APPLICATIONS

- 4.1. Computer Network LAN and WAN
- 4.2. Data Representation
- 4.3. Number Systems- Binary and Arithmetic
- 4.4. Operating System Windows

4.5. Word Processing Software - (a) MS Office (b) Word (c) Excel (d) Power point

Unit V: BIOINFORMATICS

- 5.1.0. Bioinformatics
 - 5.1.1. Definition and scope.
 - 5.1.2. Role of Internet in Bioinformatics
- 5.2.0. Biological database
- 5.2.1. Nucleotide sequence database
 - (a) European Molecular Biology Laboratory (EMBL)
 - (b) National Centre for Biotechnology Information (NCBI)
- 5.2.2. Protein sequence database (a) Protein Information resources (PIR) (b) Swiss-Prot
- 5.3.0. Role of Bioinformatics Human genome project and Arabidopsis thaliana

TOPICS FOR SELF-STUDY:

Biostatical study in Health management	https://www.publichealthcareeredu.org/biostatistics-and-informatics
Epidemiology	https://www.bmj.com/about-bmj/resources- readers/publications/epidemiology-uninitiated/1-what-epidemiology
MEGA Softwares.	https://www.megasoftware.net/
Software for security operations	https://respond-software.com/automate-your-soc/

TEXTBOOKS:

1.Gurumani. N, 2015. An introduction to biostatistics. 2nd Edition, MJP Publishers, Chennai, India.

2. Pranab kumar Banerjee, 2014. *Introduction to Biostatistics*. S. Chand And Company pvt ltd. New Delhi, India.

(15 Hours)

(15 Hours)

3. Rastogi, V.B. *Fundamentals of biostatistics*. 2nd Edition, Anne Books Pvt Ltd, New Delhi, India,

4. David W. Mound, 2001. *Bioinformatics: Sequence and Genome analysis*. Gold Spring Harbour Laboratory Press, New York.

5. Sundararajan.S. & R. Balaji. 2002. Introduction to Bioinformatics, Mumbai, Himalaya.

6. Ramakrishnan, P, 2001. Biostatistics. Saras Publication, Nagarcoil, Tamil Nadu, 2001.

REFERENCE BOOK:

- 1. Bryant, T.N. and J. W. T. 1989. *Computers in Microbiology. Practical Approach Series*. (Published in the Practical Approach Series. Editors, D. Rickwood and B.D. Hames.) Oxford University Press. Oxford, New York.
- 2. Walid A. Houry, 2016. The Molecular Chaperones Interaction Networks in Protein Folding and Degradation: 1 (Interactomics and Systems Biology), Springer.

WEB LINKS:

https://www.mooc-list.com/tags/plant-bioinformatics

http://www.srtmun.ac.in/images/Data2020/SchoolCirculars/EnrollmentOpenforSWAYAMNP TELCoursesJulytoDecember2020.pdf

Unit	Content	Learning Outcome	Highest Blooms Taxonomic level of transaction.		
Ι	BIOSTATISTICS				
1.1	Biostatistics - Definition – Scope	• Define the subject by own	K1		
1.2	Data- Definition -Types- (a) Primary(b) Secondary - Collection of data	• Recall the concept of data	K1		
1.3	Population - Definition - Types of population - (a) Finite population (b) Infinite population	• Summarize the population statistics	K2		

1.4	Samples -Definition - Sampling techniques -	•	Define sample	K1	
	Random sampling techniques				
1.5	Frequency distribution - Definition - Discrete method & Continuous method- Frequency graphs	•	Select sampling techniques Compare the various methods in frequency distribution	K1	
1.6	Statistical table - Rules, Organization and types of table	•	Make use of statistical tables	К3	
1.7	Graphical Representation of Data - Importance and general guidelines - Types of graphs - (a) Bar (b) Simple(c) Multiple(d) Percentage (e) Subdivided (f) Pie diagram (g) Pictogram (h) Cartogram	•	Interpret the graphical representation on data Distinguish among various graphical methods of data presentation	K2 K4	
1.8	Central Tendency -Mean (a) Definition (b) Merits and demerits (c) Problems - Median (a) Definition (b) Merits and demerits (c) Problems - Mode (a) Definition (b) Merits and demerits (c) Problems	•	Explain the use of mean, median and mode value in statistics.	K5	
II	Measure of dispersion				
2.1	Definition - Types of dispersion (a) Absolute measure of dispersion (b) Relative measure of dispersion	•	Recall the use of dispersion Compare the different dispersion methods	K2 K4	
2.2	Probability - Probability scale, Definition, Types and application of biological problems	•	Define probability Make use of the concept of probability in future studies	K1 K3	

2.3	Binomial distribution - Introduction, Definition and Properties of binomial distribution	• Interpret Binomial distribution	K2			
2.4	Poisson Distribution - Introduction, Definition and Properties of Poisson distribution	• Utilize poisson distribution for further studies	К3			
2.5	Normal distribution - Introduction, Definition and Properties	• Explain the concept of normal distribution	K2			
2.6	Test of Significance - Introduction, Definition, Procedure and application of chi-square test	• Make use of the test of significant functions in statistical survey	K3			
III	Introduction to computers					
3.1	Computer- Introduction- generations of computer, Applications of computer, Classification of computers.	 Define what computer is and the uses of computer Explain the classification of computer in various generation 	K1 K2			
3.2	Components of computer system.	• Identify the input and output devices in computer	K2			
3.3	Storage devices – Floppy, Compact and Hard Disc	• Interpret the number systems used in computer	K2			
3.4	Central Processing Unit	 Apply the basics in learning the software Make use of the MS software 	K3 K3			
3.5	Software Hardware	 Analyse the physical needs of networking Explain the various network connections used 	K4 K2			
-----	--	---	----------			
IV	COMPUTER APP	LICATIONS				
4.1	Computer Network - LAN and WAN	• Tell the definition of Bioinformatics	K1			
4.2	Data representations	• Interpret the databases	К2			
4.3	Number Systems- Binary and Arithmetic	• Evaluate the number systems	K4			
4.4	Operating System -Windows	 Examine the feasible process of data extraction Criticize the data management 	K4 K5			
4.5	Word Processing Software - (a) MS Office (b) Word (c) Excel (d) Power point	• Analyse the importance of computer in recent studies	K4			
V	BIOINFORMATICS AND	ITS APPLICATION	I			
5.1	5.1.0. Bioinformatics5.1.1. Definition and scope.5.1.2. Role of Internet in Bioinformatics	 Define the concept bioinformatics and various aspects of it. Interpret the techniques for future studies 	K1 K4			
5.2	5.2.0. Biological database5.2.1. Nucleotide sequence database	 Identify the scope in Biomics using Bioinformatics. Explain the basics of metabolomics 	К3			

	 (a) European Molecular Biology Laboratory (EMBL) (b) National Centre for Biotechnology Information (NCBI) 5.2.2. Protein sequence database - (a) Protein Information resources (PIR) (b) Swiss-Prot. 	and chemo informatics.	K2
5.3	Role of Bioinformatics - Human genome project and <i>Arabidopsis thaliana</i>	• Apply the metagenomics methods in genomic studies.	К3
5.4	Concept of metabolome and metabolomics, its applications- Chemoinformatics: Cheminformatics tools for drug discovery.	 Define the basics of advent branches of Bioinformatics. Construct phylogenetic trees, modify the available nucleotide data using the tools available 	K5 K6

Mapping Scheme for the Course Code: U16BY5:1

U16BY5:1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	-	-	Μ	Μ	Μ	Η	-	L	Η	-	L	L
CO2	Μ	-	-	L	L	-	Η	L	-	L	-	L	L
CO3	L	L	-	L	-	-	L	-	L	-	-	L	L
CO4	L	L	L	L	-	-	Η	Μ	-	-	L	L	L
CO5	-	-	-	-	-	L	Η	L	-	L	-	Μ	-
CO6	L	-	-	-	-	-	Η	L	-	-	-	-	L

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, record submission. Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

SBEC I – MUSHROOM AND NURSERY TECHNOLOGY

Semester : V Credits : 2

Course Code : U16BYPS1 Hours/Week: 2

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Explain the general information about mushrooms including edible and poisonous mushroom	K5	Ι
CO 2	Design and develop various technology for mushroom cultivation	K6	II
CO 3	Analyze post harvesting of mushroom and making up recipes using mushroom	K4	III
CO 4	Discuss concepts in nursery technology.	K5	IV
CO 5	Construction of nursery and greenhouse using various technology	K6	V

CO 6	Develop Entrepreneurship skill by understanding the	K6	IV,V
	cultivation and development technology for		

SYLLABUS:

Unit I: INTRODUCTION TO MUSHROOMS

1.1 Introduction and Systematic position

1.2. Structure of mushroom

1.3. Types of mushrooms- Edible mushroom - (a)Definition(b) Cultivation of Edible of mushroom- Poisonous mushroom -(a) Introduction(b) Definition

1.4 Identification of edible and poisonous Mushrooms - Physical and Chemical method

1.5 Nutrient values of edible mushroom

1.6 Life cycle

1.7 Economic values

Unit II: CULTIVATION OF MUSHROOMS

2..1 Mushroom cultivation - Compost beds, Spawn types, Production and management of Spawn, Spawn running

2.2 Disease and pest management – Insects, Nematodes, Mites, Virus, Bacteria and Fungi

2.3 Harvesting methods

Unit III: MUSHROOMS – POST HARVEST AND PROCESSING (6 Hours)

3.1 Post harvesting technology – Cleaning, Freezing, Freeze drying, Packing and Marketing
3.2 Mushroom recipes preparation – Pickle, Soup, Gravy and Biriyani

Unit IV: BASIC CONCEPTS AND TECHNIQUESOF NURSERY TECHNOLOGY

(6 Hours)

4.1 Nursery technology – Introduction, Definition

4.2 Methods of Propagation- Sexual Propagation -Vegetative Propagation –(a) Cuttings- (i)
Stem cuttings–Hibiscus (ii) Root cuttings – Rose- (b) Layering -(i) Simple layering, (ii) Air
layering – Ixora - (c) Grafting-(i) Inarching – Guava (ii)Wedge grafting - Mango
4.3 Garden implements - Garden Hose, Pick Axe, Trenching Hoe, Knapsac sprayer, Mist
Chamber, Trowel, Sprinkler, Rose Kittle, Crow Bar, Garden scissor, Grafting Knife, Rake,
Sprayer, Pruning saw, Plant cutter

(6 Hours)

(6 Hours)

UNIT V: COMPONENTS AND PREPARATION OF NURSERY BED (6 Hours)

5.1Nursery Structures - Store House, Potting, Packing Shed, Nursery bed preparation, Mist

chamber, Manures preparation, Compost preparation, Vermicompost preparation

5.2. Green houses for tropical countries - Management, Pot mixture, Pot culture, Maintenance and Marketing of Nursery Stock

TEXT BOOKS:

1. Bahl, N. 2002. *Hand book on mushrooms*. 4th Edition. Oxford and IBH publishing Co., Pvt. Ltd., New Delhi.

2. Dey, S.C. 2010. Mushroom growing, Agrobios (India), Jodhpur.

3. Edmond Musser and Andres. 1957. *Fundamentals of Horticulture*. McGraw Hill Book Co, New Delhi.

4. Gardener. 1996. *Basic Horticulture*. Mac Millan, New York.

5. Kapoor, J.N. 2001. Mushroom cultivation, Krishi Bhavan, NewDelhi.

6. Kumar N. 1997. Introduction to Horticulture. Rajalakshmi Publications, Nagercoil, India.

7. Lex Lauries and Victor H. Rice. 1979. *Floriculture – fundamentals and practices*, McGraw Hill publishers, New York. Mukherjee. D. 1977. *Gardening in India*. Oxford IBH Publishing Co., New Delhi.

9. Pathak, V.N., Yadav N. and Gaur M. 2010. *Mushroom production and processing Technology* Agrobios (India), Jodhpur.

REFERENCE BOOKS:

1. Sharma, V.P. 2006. *Diseases and Pests of Mushrooms*, MIS. IBD Publishers and Distributors, New Delhi.

2. Sharma, O.P. 2003. Textbook of Fungi, Tata McGraw Hill Publishing Co., New Delhi.

3. Singh. 2005. *Modern mushroom cultivation*. International book distributors, Dehradun.

Web link:

https://onlinecourses.nptel.ac.in/noc20_ce11/preview

SPECIFIC LEARNING OUTCOMES (SLO):

Unit/	Content	Learning Outcome	Highest
Sactio			Bloom
Secuo			taxonomic
n			level of
			transaction
1	INTROD	UCTION TO MUSHROOMS	<u> </u>

1.1	Introduction and Systematic position	•	Categorize scientific classification of mushroom	K4
1.2	Structure of mushroom	•	Discuss and elaborates about various forms of mushroom	K2
1.3	Types of mushrooms Edible mushroom - (a) Definition(b) Cultivation of Edible of mushroom Poisonous mushroom -(a) Introduction(b) Definition	•	Compile and understand the different types of mushroom Analyze mushroom cultivation techniques Examine and recognize the poisonous mushroom	K3 K4 K4
1.4	Identification of edible and poisonous Mushrooms - Physical and Chemical method	•	Analyse methods for identifying poisonous mushroom	K4
1.5	Nutrient values of edible mushroom	•	Inspect the importance of nutritional values of mushroom	K4
1.6	Life cycle	•	Interpret the life cycle of mushroom	K5
1.7	Economic values	•	Apply the economic importance of mushroom	K3
II	CULTIV	ATIO	N OF MUSHROOMS	
2.0	Mushroom cultivation - Compost beds, Spawn types, Production and management of Spawn, Spawn running	•	Develop a concept about a method for mushroom cultivation	К6
2.1	Disease and pest management – Insects, Nematodes, Mites, Virus, Bacteria and Fungi	•	Discuss and know the disease and pest management during mushroom cultivation	К6
2.2	Harvesting methods	•	Evaluate of harvesting techniques	K5

III	MUSHROOMS –I	POST HARVEST AND PROCESSI	NG
3.1	Post harvesting technology – Cleaning, Freezing, Freeze drying, Packing and Marketing	 Analyze post-harvesting technology 	K4
3.2	Mushroom recipes preparation – Pickle, Soup, Gravy and Biriyani	 Make up various recipes using mushroom 	K3
IV	BASIC CONCEPTS AND T	TECHNIQUES OF NURSERY TEC	CHNOLOGY
4.1	Nursery technology – Introduction, Definition	• Assess new methods in nursery technology	K5
4.2	Methods of Propagation	 Analyze various propagation techniques 	K4
4.2	Sexual Propagation	• Interpret the importance of sexual propagation	K5
4.2	Vegetative Propagation –(a) Cuttings, (b) Stem cuttings– <i>Hibiscus</i> ,(c) Root cuttings – Rose	• Make use of plants using numerous vegetative propagation	K3
4.2	Layering -(a) Simple layering, (b) Air layering – <i>Ixora</i>	• Explain layering methods	K5
4.2	Grafting-(a) Inarching – Guava (b)Wedge grafting - Mango	• Explain grafting method for planting	K5
4.3	Garden implements - Garden Hose, Pick Axe, Trenching Hoe, Knapsac sprayer, Mist Chamber, Trowel, Sprinkler, Rose Kittle, Crow Bar, Garden scissor, Grafting Knife, Rake, Sprayer, Pruning saw, Plant cutter	 Recommends tools for gardening 	K5
V	COMPONENTS AN	D PREPARATION OF NURSERY	BED

5.1	Nursery Structures - Store House, Potting, Packing Shed, Nursery bed preparation, Mist chamber, Manures preparation, Compost preparation, Vermicompost preparation	 Compose and construct a nursery Explain the various composting techniques. 	K6
5.2	Green houses for tropical countries - Management, Pot mixture, Pot culture, Maintenance and Marketing of Nursery Stock	 Elaborates greenhouse technology in various countries 	K6

Mapping Scheme Course Code: U16BYPS1

U16BYPS	PO	PSO	PSO	PSO	PSO								
1	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	-	-	М	-	Η	Η	Η	-	-	-	-	-	М
CO2	-	-	М	-	М	Η	L	-	-	-	-	-	L
CO3	L	-	М	-	-	-	-	-	-	-	-	-	L
CO4	-	-	М	-	L	-	М	-	-	-	-	-	L
CO5	L	-	-	-	-	-	Μ	-	-	-	-	-	L
CO6	-	-	-	L	-	L	L		-	-	-	-	L

Course assessment:

- 1. Continuous assessment by seminars, assignments, records.
- 2. Model exam and End semester exam

CORE VII- GENERAL GEOLOGY, ECOLOGY AND PHYTOGEOGRAPHYSemester : VICourse Code: U16BY607Credits : 6Hours/Week :6

Course Outcomes:

On completion of this course, the students will be able to:

S. No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Identify the varying environmental factors and its	K3	I
	influence on plants		
CO 2	Analyze Ecological structure of Plant communities in	K4	II
	relation with the Abiotic and Biotic factors		
CO 3	Differentiate the vegetation types of plant	K4	III
	communities		
CO 4	Apply different methods of vegetation studies to	K3	III
	analyze the plant communities		
CO 5	Classify and correlate the Ecological adaptation of	K5	IV
	Plants		
CO 6	Apply principles of biogeography to predict and	K5	V
	explain general characteristics of a plant community		

Syllabus: GEOLOGY

(18 Hours)

- 1.1. Scope, subdivisions and importance of Geology
- 1.2. Solar system, origin and age of earth
- 1.3. Land distribution (Continental drift)
- 1.4. Interior of the earth

1.5. Soil

1.5.1. Soil erosion and soil types of India.

- 1.6. Elementary knowledge of ground water
- 1.6.1.Surface water systems.

Unit II: ECOLOGY

(18 Hours)

- 2.1. Scope and importance of studying ecology.
- 2.2. Approaches to the study of ecology
- 2.2.1. Autecology
- 2.2.2. Synecology
- 2.3. Plants and Environmental factors
- 2.3.1 Plants and Climate
- 2.3.2. Plants and Edaphic factors
- 2.3.3. Plants and Biotic factors

2.3.4. Topographic factors. **Unit III – EVOLUTION OF PLANT COMMUNITY**

- 3.1. Development of vegetation, Migration, Ecesis and colonization.
- 3.2. Methods of studying vegetation, Physiognomic method, Phytosociological method -Quadrat, transect and Point method, Determination of Density, Frequency and
- Abundance, Verification of Raunkier's Law
- 3.4. Plant succession, Hydrosere and Xerosere., Climax Concept
- 3.5. Biome

Unit IV – PLANT RESPONSE

- 1.1. Ecological classification of plants, Hydrophytes, Mesophytes Xerophytes,
- 1.2. Epiphytes and Halophytes
- 4.2. Ecological Adaptation of Plants, Morphological and anatomical features of plants and their correlation to their respective Habitats
- 4.3. Plant as Ecological Indicators

Unit V: PHYTOGEOGRAPHY

- 5.1 Definition and importance
- 5.2. Types of distribution of plants (continuous and discontinuous)
- 5.3. Climate of India and climatic zones.
- 5.4. Phytogeographic regions of India
- 5.3. Forest types of India, characterization and its management.
- 5.4. Vegetational types of Tamil Nadu Evergreen, deciduous, scrub and mangrove.
- 5.5. Conservation of vegetation and its importance

Sl.	Topics	Reference Book/Web Links
No.		
1.	Geographic Deltas of India	https://www.geographynotes.com/landforms/classification-of-deltas-6- types-landforms-geography/2470 https://www.nationalgeographic.org/encyclopedia/delta/
2.	Climate in India	https://www.toppr.com/guides/geography/climate/climate-of-india/ https://www.newworldencyclopedia.org/entry/Climate_of_India
3.	The Kharif and Rabi Crops in India	https://www.javatpoint.com/kharif-crops-vs-rabi- crops#:~:text=Major%20Kharif%20crops%20are%20rice,for%20the%2 0growth%20of%20crops.

TOPICS FOR SELF-STUDY:

(18 Hours)

(18 Hours)

(18 Hours)

-	
	https://www.drishtiias.com/to-the-points/paper3/cropping-patterns-and-
	major-crops-of-india-part-one

TEXT BOOKS:

1. Ambasht, R.S. 1974. *Text Book of Plant Ecology* (3rd Edition) Students & Friends Co., Varanasi.

- 2. Odum, E.P. 1975. Ecology, Holt, Rinert & Winston.
- 3. Kochhar, P.L Plant Ecology (9th Edition) S.Nagi& Co, Jullandhar.
- 4. Cain, S.A. 1944. Foundations of Plant Geography, Harper & Brothers N.Y.
- 5. Sharma, P.D. 1989. Element of Ecology. Rastogi Publications, U.K
- 6. Newman, E.I. 2000. Applied Ecology. Blackwell scientific Publishers U.K.

REFERENCE BOOKS:

1. Shukla, R.S. and P.S Chandel, 1975. *Plant Ecology & Soil Science*. S. Chand & Co., New Delhi.

2. Mani, M.S. 1974. Ecology & Biogeography of India. Dr. W. Junk Publishers, The Hague.

3. Good, R. 1977. The Geography of the flowering plant (2nd edition) Longmans Green &

Co., Inc. London & Allied Science Publishers, New Delhi.

Web Links:

https://onlinecourses.nptel.ac.in/noc19_ge23/preview https://onlinecourses.swayam2.ac.in/cec19_bt03/preview SPECIFIC LEARNING OUTCOMES (SLO):

Unit/Se ction	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
1		GEOLOGY	
1.1	Scope, subdivisions and importance of Geology	• List out the scope and importance of geology	K1
1.2	Solar system, origin and age of earth	Illustrate the various theories of origin of solar system	K2
		• Analyse the age of age	K 4
1.3	Land distribution (Continental drift)	• classify the various components of Soil.	K2

1.4	Interior of the earth	• Classify the different layers of earth.	K4
1.5	Soil- Soil erosion and soil types of India.	• Define the soil formation and its characteristics.	K1
		• Explain various zones of soil profile	K2
		 Classify the various types of soils 	K2
1.6	Elementary knowledge of ground water and Surface water systems	• recall and explain the different forms of water in earth	K2
		 apply the knowledge on ground water systems for proper use 	К3
II		ECOLOGY	
2.1	Scope and importance of studying ecology.	• explain the importance of Ecology	K2
		• make use of the various scopes in Ecology	К3
2.2	Approaches to the study of ecology, Autecology Synecology	• relate the different studies in ecology.	K2
2.3	Plants and Environmental factors Climate, Topographic factors, Edaphic factors, Plants and Biotic factors	 compare the distribution of plants in relation with their environmental factors explain the various interaction of with its biotic factors 	K4
2.4	Ecosystem -Types of Ecosystem, Ecological Pyramid, energy flow, Food web - Niche	 illustrate the structure and function of different ecosystem 	K2 K2
2.5.	Community ecology and Population Dynamics.	• Analyze the natality, mortality, productivity of a population.	K4
III	EVOLUTI	ON OF PLANT COMMUNITY	
3.1	Development of vegetation, Migration, Ecesis and colonization.	• demonstrate the development of vegetation	K2

3.2	Methods of studying vegetation, Physiognomic method, Phytosociological method, Quadrat, transect and Point method, Determination of Density, Frequency and Abundance, Verification of Raunkier's Law	 apply different methods of vegetation studies in Field interpret the data obtained from vegetation studies. 	K3 K4
3.3	 Plant succession, Hydrosere and Xerosere. Climax Concept, Biome 3.2. Methods of studying vegetation, Physiognomic method, Phytosociological method - Quadrat, transect and Point method, Determination of Density, Frequency and Abundance, Verification of Raunkier's Law 3.4. Plant succession, Hydrosere and Xerosere., Climax Concept 3.5. Biome 	 summarize the various concepts of plant succession Distinguish the different stage of plant succession 	K2 K4
IV]	PLANT RESPONSE	
4.1	Ecological classification of plants, Hydrophytes, Xerophytes, Epiphytes, Halophytes	• classify the plants based on their habitats	K2
4.2	Ecological Adaptation of Plants, Morphological and anatomical features of plants and their correlation to their respective Habitats	 explain the adaptation of plants in relation with their habitat. examine morphological and anatomical modification of plants in different 	K2
		environmental condition.	
4.3	Plant as ecological Indicator	 Define the importance of plants as the ecological indicator. 	K5
4.3 V	Plant as ecological Indicator P	 Define the importance of plants as the ecological indicator. HYTOGEOGRAPHY 	K5

5.2	Climate of India and climatic zones. Phytogeographic regions of India	• S p I	Summarize the phytogeographic regions of ndia	K2
5.3	Forest types of India, characterization and its management, -Vegetational types of Tamil Nadu – Evergreen, deciduous, scrub and mangrove.	• (b f	Classify the vegetation types based on the component of the forests	K4
5.4	Conservation of vegetation and its importance	• c c c	choose appropriate conservation strategies for the conservation of vegetation	K5

Mapping Scheme for the Course Code: U16BY607

U16BY607	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	L	Μ	-	Η	Μ	-	-	-	Η	-	-	-
CO2	Μ	-	Μ	-	Η	-	-	-	Η	Η	-	-	-
CO3	Н	-	-	-	L	L	-	Μ	Η	Μ	-	-	-
CO4	Η	Μ	-	-	L	L	Η	-	Μ	-	L	-	Н
CO5	Н	L	L	-	Μ	-	-	-	Μ	Μ	-	-	Μ
CO6	Η	Μ	-	-	-	-	-	Μ	Η	L	L	-	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission. Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

CORE VIII – GENERAL MICROBIOLOGY

Semester : VI

CourseCode : U16BY608

Credits :5

Hours/Week: 6

Course Outcome

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Interpret and explain various forms of Microorganisms	K2	I, II, III
CO 2	Classify the structure, functions and various relationship between the microbes	K4	I, II, III
CO 3	Compare and contrast the various types reproductive cycle.	K2	I and III
CO 4	Distinguish the various microbes used in biofertilizer preparation.	K5	V
CO 5	Identify the causal agent of microbes and control the mechanisms of pathogens and diseases.	K3	IV
CO 6	Examine the evidences of management and host resistance of diseases.	K4	IV

On completion of this course, the students will be able to:

Unit I : CLASSIFICATION OF MICROORGANISMS

(18 hours)

- 1.1.0 Microbiology
- 1.1.1 Define Microbes
- 1.2.1 History of Microbiology.
- 1.3.1 Concepts of microbiology
- 1.4.1 Scope of microbiology
- 1.5.1 Classification of Microorganisms
- 1.6.0 Bacteria
- 1.6.1 Morphology
- 1.6.2 Cell Structure,
- 1.6.3 Growth,
- 1.6.4 Nutrition,
- 1.6.5.0 Reproduction 1.6.5.1- Asexual methods 1.6.5.2-Sexual Method
- 1.6.6 Economic Importance of Bacteria,

1.7.0 Virus

- 1.7.1 Morphology,
- 1.7.2 Cell Structure
- 1.7.3 Nutrition,
- 1.7.4 Reproduction 1.7.4.1 Lytic cycle 1.7.4.2- Lysogenic cycle
- 1.8.0 Yeast
- 1.8.1 Morphology
- 1.8.2 Cell Structure,
- 1.8.3 Nutrition,
- 1.8.4.0 Reproduction 1.8.4.1- Vegetative 1.8.4.2.- Asexual 1.8.4.3 Sexual
- 1.8.5 Economic importance of Yeast.
- 1.9.0 Cyanobacteria
- 1.9.1 Morphology
- 1.9.2 Cell Structure
- 1.9.3 Nutrition
- 1.9.4.0 Reproduction 1.9. 4.1- Vegetative 1.9. 4.2 Asexual
- 1.9.5 Economic Importance of cyanobacteria.

Unit II : METHODS IN MICROBIOLOGY

(18 hours)

- 2.1.0 Microscope
- 2.1.1 Basic Principles of microscopy
- 2.2.0 Light Microscopes
- 2.2.1 Simple microscope- Principle,
- 2.2.2 Structure
- 2.2.3 Applications
- 2.2.4.1 Compound Microscope- Principle
- 2.2.4.2 Structure
- 2.2.4.3 Applications
- 2.3.1 Fluorescence microscopes- Principle,
- 2.3.2 Structure

2.3.3 Applications

2.4.1TEM - Principle,

- 2.4.2 Structure
- 2.4.3 Applications
- 2.5.1 SEM- Principle,
- 2.5.2 Structure
- 2.5.3 Applications
- 2.6.0 Micrometer
- 2.6.1 Define Micrometry-
- 2.6. 2 Ocular meter
- 2.6.3 Stage meter
- 2.7.0 Stanining
- 2.7.1 Define staining,
- 2.7.2 Staining- Procedure,
- 2.7.3.0 Types of staining

2.7.3.1 Simple staining, 2.7.3.2 Gram staining, 2.7.3.3 Negative staining 2.7.3.4 Acid fast staining.

2.8.0 Sterilization

- 2.8.1 Define Sterilization and methods
- 2.8.2 Heat sterilization,
- 2.8.3 Chemical sterilization,
- 2.8.4 Filtration,
- 2.8.5 UV radiations,
- 2.8.6 Aldehydes
- 2.8.7 Gases
- 2.9.0 Culture media
- 2.9.1 Define Culture media
- 2.9.2 Types of culture media
- 2.9.3 Broth culture

2.9.4 Agar plate plate culture

- 2.10.0 Pure culture
- 2.10.1 Define Pure culture
- 2.10.2.0 Methods of purer culture

2.10.2.1 Serial dilution technique, 2.10.2.2 Streak plate cultures, 2.10.2.3 Pour plate culture, 2.10.2.4 Spread plate technique, 2.10.2.5 Enrichment culture, 2.10.2.6 Selective medium culture, 2.10.2.7 Differential medium culture 2.10.2.8 Single isolation culture

Unit III : FOOD AND DAIRY MICROBIOLOGY

(18 hours)

3.1.0 Milk

- 3.1.1 Microorganisms in milk,
- 3.2.1 Preservation of milk
- 3.2.2 Pasteurization,
- 3.2.3 Sterilization
- 3.2.4 Dehydration.
- 3.3.1 Bacteriological standard
- 3.3.2 Grading of milk
- 3.3. 3 Methylene Blue reduction test
- 3.4.1 Define Dairy Products
- 3.4.2 Fermented milk,
- 3.4.3 Curd,
- 3.4.4 Butter
- 3.4.5 Ghee
- 3.4.6 Cheese.
- 3.5.1 Define Food spoilage
- 3.5.2 Causes of food spoilage
- 3.5.3 Biochemical changes of food spoilage
- 3.6.1 Define Food poisoning
- 3.6.2 Types of food poisoning

3.7.1 Methods of Food preservation.

Unit IV : MEDICAL MICROBIOLOGY

4.1 Disease, Disease causing organism, symptoms and Prevention and control measure-Typhoid, Cholera, Hepatitis -B, Common cold, Mycosis –superficial, Amoebiasis and Malaria

Unit V : ENVIRONMENTAL MICROBIOLOGY

5.1.0 Biogeochemical cycle

- 5.1.1 Define Biogeochemical cycle
- 5.1.2 Role of microorganisms in biogeochemical cycle
- 5.2.1 Nitrogen cycle
- 5.3.1 Carbon cycle
- 5.4.0 Biofertilizers
- 5.4.0 Importance of Biofertilizers
- 5.5.0 Rhizobium,
- 5.5.1 identification
- 5.5.2 Isolation
- 5.5.3 Mass culture
- 5.5.4 Commercial production
- 5.6.0 Azospirillum
- 5.6.1 identification
- 5.6.2 Isolation
- 5.6.3 Mass culture
- 5.6.4 Commercial production
- 5.7.0 Mycorrhiza,
- 5.7.1 identification
- 5.7.2 Isolation
- 5.7.3 Mass culture
- 5.7.4 Commercial production
- 5.8.0 Biodegradation

(18 hours)

(18 hours)

- 5.8.1 Define biodegradation
- 5.8.2. Biodegrading agents
- 5.8.3 Degradation of Xenobiotics
- 5.8.4 Degradation of hydrocarbons
- 5.8.5 Degradation of Polychlorinated Biphenyl compounds
- 5.8.6 Bioremediation
- 5.8.7Advantages of biodegradation
- 5.9.0 Bioleaching.
- 5.9.1 Define bioleaching
- 5.9.2 Types of bioleaching
- 5.9.3 Direct bioleaching
- 5.9.4 Indirect bioleaching
- 5.9.5 Advantages of bioleaching

TOPICS	REFERENCES
Kingdom	1. Sharma O.P.,2006. <i>Text book of Fungi</i> , McGrewHillEducation Private
classification	2. Michael.J.Pelczar,J.R.,E.C.S.Chanand Net RKrieg. 2013. <i>Microbiology</i> ,
	McGrewHillEducation Private Limited, New Delhi, India.
Arboviruses	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180381/
	https://www.sciencedirect.com/topics/medicine-and-dentistry/arbovirus
	https://www.microbiologyresearch.org/content/arboviruses-and-their-
	vectors
Dualistic	https://www.sciencedirect.com/topics/agricultural-and-biological-
Enterococcus	
in food	https://cmr.asm.org/content/32/2/e00058-18
Listeriasis	https://www.cdc.gov/listeria/index.html

TOPICS FOR SELF-STUDY:

Vermicompos	https://www.sciencedirect.com/topics/earth-and-planetary-
ting	sciences/vermicomposting
Environmenta	http://www.fao.org/3/x5872e/x5872e0c.htm
l reclamation	
Innate	https://pubmed.ncbi.nlm.nih.gov/23660678/
mechanisms in plants	https://www.nature.com/subjects/plant-immunology
Crown	https://link.springer.com/article/10.1007/s13225-011-0128-7
Oomycetes	https://bsppjournals.onlinelibrary.wiley.com/doi/full/10.1111/mpp.12190?s crollTo=references

TEXT BOOKS:

1. Arumugam. N, A. Mani, A. M. Selvaraj and Narayanan. L. M. 2014. *Microbiology*, Saras publication, Nagarcoil, Kanyakumari district.

2. Dubey, R. C. and D.K. Maheshwari, 2004. *A Text book of Microbiology*. Published by S.Chand & Company Ltd, 7361, Ram nagar, New Delhi.

REFERENCES BOOKS-

Microbiology

1.Michael.J.Pelczar,J.R.,E.C.S.Chanand NodRKrieg. 2013. *Microbiology*,McGrewHillEducation Private Limited, New Delhi, India.

2. Lansing M. Prescott, John P. Harley, Donald A. Klein. 2005. *Microbiology* 6th Edition, Mc Grew Hill Companies, New York.

3. Moshrafuddin Ahmed and Basumatary. S. K. 2006. Applied Microbiology, MJP Publishers, Chennai.

4. Ananthanarayan and Panikers, 2012. Text book of Microbiology 9th Edition. Orient Publication.

5. Kathleen P.Talaro and Berry Chess. 2017. Foundations in Microbiology. McGraw-Hill.

Web Link:

https://nptel.ac.in/courses/102/103/102103015/

SPECIFIC LEARNING OUTCOMES (SLO):

Unit	CONTENT	LEARNING OUTCOME	Highest
			Bloom
			level of
			transaction
Ι	Unit I : CLASSIFICATION OF	MICROORGANISMS	
1.1.0	Microbiology	• Illustrate the general	
1.1.1	Define Microbes	characteristic feature of micro-organisms	K2
1.2.1	History of Microbiology.	• Compare the	K3
1.3.1	Concepts of microbiology	various period of microbiology	
1.4.1	Scope of microbiology	• apply the scope of microbiology	
			K2
1.5.1	Classification of Microorganisms	 Classify and explain the Whittaker's five kingdom concept 	K2
1.6.0	Bacteria	• Explain the	
1.6.1	Morphology	morphology and structure of bacteria	
1.6.2	Cell Structure,	• Interpret the various	K2
1.6.3	Growth,	types of reproduction.	
1.6.4	Nutrition,	• Apply the various	К3
1.6.5	Reproduction- Asexual methods	use of bacteria	
	and Sexual Method		
1.6.6	Economic Importance of Bacteria,		
1.7.0	Virus	• Illustrate the structure and	K2

2.2.4.1	Compound Microscope- Principle	microscope.	
2.2.3	Applications	contrast of Simple and compound	K4
2.2.2	Structure	• Compare and	
2.2.1	Simple microscope- Principle,	and application of microscopes.	K2
2.2.0	Light Microscopes	• Explain the structure	
2.1.1	Basic Principles of microscopy	microscopes.	
2.1.0	Microscope	• Label the various	K2
II	METHODS IN	N MICROBIOLOGY	
	cyanobacteria.		
1.9.5	Economic Importance of		
	Asexual		
1.9.4	Reproduction – Vegetative,		
1.9.3	Nutrition	green algae.	
1.9.2	Cell Structure	reproduction and	K4
1.9.1	Morphology	 Demonstrate the 	K2
1.9.0	Cyanobacteria	• Label the structure	KO.
1.8.5	Economic importance of Yeast.	importance of yeast.	
	Asexual and Sexual	yeast.Utilize the	
1.8.4	Reproduction – Vegetative,	reproduction in	K3
1.8.3	Nutrition,	 Explain the types of 	
1.8.2	Cell Structure,	• Classify the	K2
1.8.1	Morphology	yeast.	
1.8.0	Yeast	• List out	K1
	Lysogenic cycle	virus.	
1.7.4	Reproduction–Lytic cycle-and	reproduction in	
1.7.3	Nutrition,	types of	K 4
1.7.2	Cell Structure	virus • Examine the various	V A
1.7.1	Morphology,	characteristic of	

2.2.4.2	Structure		
2.2.4.3	Applications		
2.3.1	Fluorescence microscopes-	• Label the various	K2
	Principle,	parts of fluorescence and electron	
2.3.2	Structure	microscopes.	
2.3.3	Applications	• Explain the structure and application of	K2
2.4.1	TEM - Principle,	electron	
2.4.2	Structure	microscopes.	K4
2.4.3.	Application	contrast of SEM and	
2.5.1	SEM- Principle,	TEM microscope.	
2.5.2	Structure	micrometry	
2.5.3	Applications		
2.6.0	Micrometer		
2.6.1	Define Micrometry-		
2.6.2	Ocular meter		
2.6.3	Stage meter		
2.7.0	Staining	• List out the various	K2
2.7.1	Define staining,	types of staining methods.	К2
2.7.2	Staining- Procedure,	• Explain the types of	112
2.7.3	Types of staining	staining methods.	
	Simple staining, Gram staining,	bacterial based	К3
	Negative staining and Acid fast	staining.	
	staining.		
2.8.1	Define Sterilization and method	Compare and	
2.8.2	Heat sterilization,	contrast of physical and chemicals	K)
2.8.3	Chemical sterilization,	methods of	182
2.8.4	Filtration,	sterilization.Relate and apply the	
2.8.5	UV radiations,	types of sterilization	K1
2.8.6	Aldehydes	techniques.	

2.8.7	Gases	Apply various types physical starilization	K3
290	Culture media	• Define and classify	
2.9.0	Define Culture media	the types of culture	К2
2.9.2	Types of culture media	• Explain the types of	к2
2.9.3	Broth culture	culture media for pure culture	112
2.9.4	Agar plate plate culture	isolation.	
2.10.0	Pure culture	• Interpret various	
2.10.1	Define Pure culture	form of pure culture and apply in isolation microbes.	K2
2.10.2	Methods of purer culture		
2.10.2.1	Serial dilution technique,		
2.10.2.2	Streak plate cultures,	• Discuss the types of culture media for	VG
2.10.2.3	Pour plate culture,	pure culture	NO
2.10.2.4	Spread plate technique,	isolation.	
2.10.2.5	Enrichment culture,	form of pure culture	
2.10.2.6	Selective medium culture,	and apply in isolation microbes.	K2
2.10.2.7	Differential medium culture		
2.10.2.8	Single isolation culture		
III	FOOD AND DA	IRY MICROBIOLOGY	
3.1.0	Milk		K1
3.1.1	Microorganisms in milk,	• List out the microorganisms present in milk	
3.2.1	Preservation of milk	• Discuss the various	K6
3.2.2	Pasteurization,	methods of preservation of milk	
3.2.3	Sterilization	preservation of milk	
3.2.4	Dehydration.		
3.3.1	Bacteriological standard	• Explain the bacterial standard of	K4

3.3.2	Grading of milk	pasteurized milk.
3.3.3	Methylene Blue reduction test	• Assess milk with the K5 help of MBR test.
3.4.1	Define Dairy Products	• Elaborate in details K6
3.4.2	Fermented milk,	about the source of contamination of
3.4.3	Curd,	milk.
3.4.4	Butter	• Identify briefly the K3
3.4.5	Ghee	and cheese
3.4.6	Cheese.	
3.5.1	Define Food spoilage	• List out the toxin K4
3.5.2	Causes of food spoilage	responsible for Staphylococcus food
3.5.3	Biochemical changes of food	poisoning
	spoilage	Compare between food spoilage and
3.6.1	Define Food poisoning	food poisoning.
3.6.2	Types of food poisoning	• Explain the principle K5
3.7.1	Methods of Food preservation.	preservation
IV	MEDICAL	MICROBIOLOGY
4.1.0.	Typhoid	• Name a few K1
4.1.1	Causal organisms	transmission of
4.1.2	Symptoms	disease.
4.1.3	Prevention and control measure	• Compare the symptoms, diagnosis
4.2.0	Cholera	and treatment of
4.2.1	Causal organisms	typhoid and cholera.
4.2.2	Symptoms	
4.2.3	Prevention and Control measures	
4.3.0	Hepatitis B	• Discuss the few viral K6
1		diseases of man and

4.3.2	Symptoms	• What are reservoirs	
4.3.3	Prevention and Control measures	of viral infections?	
4.4.0	Common cold		
4.4.1	Causal organisms		
4.4.2	Symptoms		
4.4.3	Prevention and Control measures		
4.5.0	Mycosis -superficial	Define mycosis	K1
4.5.1	Causal organisms	• Explain the few fungal diseases of	K5
4.5.2	Symptoms	man and their	KJ
4.5.3	Prevention and Control measures	control measures.	
4.6.0	Amoebasis	• Define	
4.6.1	Causal organisms	Epidemiology.	K1
4.6.2	Symptoms	protozoa disease	
4.6.3	Prevention and Control measures	• Discuss the protozoa	
4.7.0	Malaria	their control	K6
4.7.1	Causal organisms	measures.	
4.7.2	Symptoms	• Identify the host parasitic	K3
4.7.3	Prevention and Control measures	relationship.	
V	ENVIRONMEN	TAL MICROBIOLOGY	
5.1.0	Biogeochemical cycle	• List out the types of	K4
5.1.1	Define Biogeochemical cycle	biogeochemical cycle	к2
5.1.2	Role of microorganisms in	• Explain the role of	112
	biogeochemical cycle	microbes in biogeo	K0
5.2.1	Nitrogen cycle	 Outline the types of 	К2
5.3.1	Carbon cycle	Nitrogen cycle and	
		 Interpret relationship 	
		between nitrogen	K2

			and carbon cycle.	
5.4.0	Biofertilizers	•	Define Biofertilizer	K2
5.4.1	Importance of Biofertilizers	•	Classify and explain of biofertilizer	K2
5.5.0	Rhizobium,	•	Illustrate the mass	
5.5.1	identification		cultivation <i>Rhizobium</i>	K2
5.5.2	Isolation	•	Summarize the	K2
5.5.3	Mass culture		relationship between	
5.5.4	Commercial production		commercial	
5.6.0	Azospirillum		production biofertilizer.	K5
5.6.1	identification	•	Estimation of	
5.6.2	Isolation		various production	
5.6.3	Mass culture		process.	
5.6.4	Commercial production			
5.7.0	Mycorrhiza			
5.7.1	identification			
5.7.2	Isolation			
5.7.3	Mass culture			
5.7.4	Commercial production			
5.8.0	Biodegradation	•	Comment on	
5.8.1	Define biodegradation	•	Biodegradation Explain Xenobiotics	K5
5.8.2	Biodegrading agents		Explain Menoblets	K.
5.8.3	Degradation of Xenobiotics			
5.8.4	Degradation of hydrocarbons			
5.8.5	Degradation of Polychlorinated			
	Biphenyl compounds			
5.8.6	Bioremediation	•	List out types of	
5.8.7	Advantages of biodegradation	•	bioremediation.	K4 K5
			advantage of	11.7

		bioremediation.	
5.9.0	Bioleaching.	• Discover the various	K4
5.9.1	Define bioleaching	types of bioleaching methods	
5.9.2	Types of bioleaching	• Make use of the	
5.9.3	Direct bioleaching	advantage of	K3
5.9.4	Indirect bioleaching	 Explain bioleaching 	
5.9.5	Heaps or dumos method		
5.9.6	Insitu bioleaching		
5.9.7	Bioreactor		
5.9.8	Advantages of bioleaching		

Mapping Scheme for the Course Code: U16BY508

U16BY 508	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	-	Η	L	Μ	Н	L	L	Μ	Μ	L	Н	-
CO2	Н	Μ	L	-	-	L	L	-	L	Н	Μ	Н	-
CO3	Η	L	-	-	L	-	-	-	Μ	Η	L	Н	Н
CO4	Η	L	L	-	Μ	-	-	-	Μ	Μ	-	Н	Н
CO5	Μ	L	-	Μ	-	L	Μ	L	-	Μ	Η	-	L
CO6	Μ	-	-	L	L	Μ	L	L	Μ	-	-	L	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

1. Course-end survey

Core Practical -VI - MAJOR PRACTICAL VI

Hours/Week: 3 Course Code: U16BY6P6

Credits: 2 Semester: VI

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Analyse the importance of food web and organisms in each level	K4	Ι
CO 2	Identify the process of ecological succession	K3	Ι
CO 3	Determine the importance of microbes	K5	II
CO 4	Identify the plant breeding method utilized	K3	III
CO 5	Explain the plant diseases	K2	IV
CO 6	Define the plant protection techniques	K2	V

SYLLABUS

ECOLOGY

(18 Hours)

(18 Hours)

- 1. Construct an ecological niche from given set of data (Representation only required, drawing not necessary)- Draw Ecological Pyramids (number, biomass, energy) with given set of data.
- 2. Study of Morphological and anatomical characteristics of Plant groups: Hydrophytes, Xerophytes
- 3. Study of Plant Communities: Determination of density, abundance, frequency and dominance by quadrat method.
- 4. Study on edaphic factors: Determination of water and soil pH, Capillarity and Retentivity of soil.
- 5. Determination of dissolved Oxygen by Winkler's method.
- 6. Study of Ecosystems -Pond, Grassland, Agricultural land and Scrub vegetation.

MICROBIOLOGY

- 1. Basic requirements of a microbiology laboratory
- Basic requirements of a finic follology fabora
 Preparation of temporary cotton plugs
- Preparation of culture media- Nutrient broth medium and PDA medium
- 4. Methods of sterilization
- 5. Fungal spore identification and germination

6. Isolation of Microorganism from soil, air, water, food, vegetables and plants	
7. Techniques for pure culture of microorganisms	
8. Serial Dilution - Agar plate method	
9. Methods of culture, preservation and maintenance	
10. Measurement of Microorganisms using micrometer.	
11. Methylene blue reductase test.	
12. Measurement of fungal growth by colony diameter method.	
13. Completed Test for coliform bacteria	
Plant Breeding:	(3 Hours)
1. Slection methods- Explanation through charts	
a. Mass selection	
b. Pureline selection	
c. Clonal selection	
2. Hybridization and Emasculation- Class work	
Plant Pathology	(3 Hours)
Name of the disease, casual organism, symptoms of the disease, control and preve	ention
methods of the following diseases.	
Live diseased specimens for spotters	
1. Little leaf of Brinjal	
2. Tobacco Mosaic Virus	
2 Citrus conkor	

3. Citrus canker

SI.

1

2

3

4. Red rot of Sugarcane

Plant Protection- Spotters

TOPICS FOR SELF-STUDY:

(3 Hours)

Topics for Reference Link Self-Study No. https://en.wikipedia.org/wiki/Ecological_efficiency Law of ten percent https://www.usgs.gov/special-topic/water-science-BOD, COD school/science/biological-oxygen-demand-bod-and-water https://courses.lumenlearning.com/microbiology/chapter/staining-Staining techniques microscopic-specimens/

TEXT BOOKS:

1. Shukla, R.S. and P.S Chandel, 1989. Plant Ecology & Soil Science. S. Chand & Co., New Delhi.

2. Sharma, P.D. Element of Ecology. 1989. Rastogi Publications, U.K.

3. Rekha Arya. 2014. Unified Practical Botany. Hindi Sahitya Sadan. ISBN: 81-88388-78

REFERENCE BOOKS:

- 1. Newman, E.I. 2000. Applied Ecology. Blackwell scientific Publishers U.K.
- 2. P.K. Chhonkar, Bhadrarav. S, Patra. A.K. 2001. *Experiments In Soil Biology And Biochemistry*. Prestige Publishers. India.

WEB LINK:

https://www.coursera.org/courses?query=ecology

https://www.acsedu.com/courses/cell-biology-877.aspx

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomic level of transaction
Ι		Ecology	
1	Food web, Ecological pyramid	 Explain the importance of levels of organization Relate the organisms 	K2 K2
2	Morphological and anatomical study of plant groups	 Define the internal structure of plants in special habits Explain the adaptations of plants on specific groups 	K1 K2
3	Study of plant communities	 Analyze the importance of plant community development Explain each communities in a succession 	K4 K2
4	Study of edaphic factors	 Define the importance of soil components Compare the soil components. 	K1 K2
5	Study of DO and ecosystems	 Explain the structure of various ecosytems Analyze the pollution content in an ecosysytem 	K2 K4

II	Ν		
1	Basic requirements of a microbiology laboratory	• Explain the different microbes having economic	K2
2	Preparation of temporary cotton plugs	K5	
3	Preparation of culture media- Nutrient broth medium and PDA medium		
4	Methods of sterilization		
	Fungal spore identification and germination		
5	Isolation of Microorganism from soil, air, water, food, vegetables and plants		
6	Techniques for pure culture of microorganisms		
7	Serial Dilution -Agar plate method		
8	Methods of culture, preservation and maintenance		
9	Measurement of Microorganisms using micrometer.		
	Methylene blue reductase test.		
	Measurement of fungal growth by colony diameter method.		
	Completed Test for coliform bacteria.		
III	Р	LANT BREEDING	
	Selection methods- Explanation through charts	• Apply the useful method for plant propagation	K3

	a. Mass selection									
	b. Pureline selection									
	c. Clonal selection									
IV	PLANT PATHOLOGY									
	Name of the disease, casual organism, symptoms of the disease, control and prevention methods of the following diseases. Live diseased specimens for spotters 1. Little leaf of Brinjal 2. Tobacco Mosaic Virus 3. Citrus canker 4. Red rot of Sugarcane	 Explain the diseases caused by microbes in plants 	K2							
V	PL	ANT PROTECTION								
	1. Knapsac Sprayer	• Explain the methods for	K2							
	2. Duster	prevention of plants from diseases								

Mapping Scheme for the Course Code: U16BY6P6

U16BY6P	PO	PSO	PSO	PSO	PSO								
6	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Н	-	М	Η	М	-	L	М	Η	Н	-	-	М
CO2	Н	-	М	-	М	Н	L	-	-	Н	-	М	L
CO3	L	-	-	М	-	-	-	-	-	-	-	-	L
CO4	L	-	М	-	L	-	M	-	-	-	-	-	L
CO5	Н	L	-	-	-	-	M	-	-	Н	-	Н	L
CO6	М	М	-	L	-	L	L		-	Н	-	Н	L

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in Practical works, sectioning, record submission.

Practical tests, Records etc. (as applicable), Class tests, Model Exams.

End Semester Examination

Indirect

- 1. Course-end survey
- 2. Field studies.

Elective II -PLANT BREEDING, PATHOLOGY, PROTECTION AND ORGANIC FARMING

Couse code : U16BY6:1

Semester : VI

Credits :5

Course Outcomes:

On completion of this course, the students will be able to:

No.	COURSE OUTCOMES (CO)	Level	Unit
CO 1	Make use of the knowledge on means of exploiting plants through varies breeding programs	K3	Ι
CO 2	Explain the necessity of breeding programs, hybrid vigor	K5	Ι
CO 3	Interpret how humans flourished by breeding and domestication of plants.	K4	II
CO 4	Explain the causal agent of microbes, evidence of management of plant diseases.	K6	III
CO 5	Elaborate the knowledge of crop protection, soil and crop management for sustainable organic agricultural production and development.	K6	IV
CO6	Improve the soil production with the application of compost and organic residues for the substitution of chemical and mineral fertilizers	K6	V

Syllabus:

Unit I: PLANT BREEDING

Introduction to Plant breeding

(15 Hours)

Hours/Week : 5

1.2.3. Importance-Plant Domestication **Concepts of Domestication** Center of Origin of Species- N. Vavilov Basic principles of selection methods Mass Selection Pure line Selection **Clonal selection** Hybridization Objectives Hybridization procedure Choice of parents(b) Emasculation(c) Bagging and Labelling (d) Harvesting and Raising F1 generation Heterosis Definition Genetic causes of heterosis Dominance theory (b) Over dominance theory Physiological causes of heterosis Effects of heterosis

Unit II- BREEDING METHODS

Mutation Breeding **Definition – Mutation and Mutagenesis** Types of mutation Spontaneous(b) Induction -Physical and Chemical Application and limitation Achievements Polyploidy in breeding Types of Polyploidy Aneuploidy(b) Euploidy(c) Autopolyploidy(d) Allopolyploidy Application Achievements Breeding for disease resistance Disease escape Disease resistance - Vertical and Horizontal Mechanisms of Disease resistance Mechanical(b) Hypersensitivity(c) Antibiosis(d) Nutritional Achievements Breeding for drought tolerance Mechanisms of Drought Resistance Drought escape(b) Drought avoidance(c) Drought tolerance (d) Drought resistance Achievements in Drought tolerance Plant breeding achievements in India with reference to Rice, Wheat, Sugarcane

Unit III: PLANT PATHOLOGY

(15 Hours)

Plant pathology

(15 Hours)
Classification of Plant diseases Study of the following diseases with reference to casual agents, symptoms, and preventions and control methods. Little leaf of Brinjal Tobacco Mosaic virus Citrus Canker Red rot of Sugarcane **Unit IV: PLANT PROTECTION** (15 Hours) Principles of Plant Protection Methods of plant protection Prevention Control Eradication Methods of control Cultural practices Quarantine methods Methods of application of fungicides and pesticides Sprayers Dusters **Integrated Pest Management Concepts and Principles** Approaches 4.5.3. Advantages Seed treatment Methods of Seed treatment Hot water, (b) Dry heat, (c) Aerated heat and (d) Radiation Chemical and Biological treatment Soil treatment Sterilization Heating and (b) Fumigation

Unit V: ORGANIC FARMING

Organic farming Concepts and Importance Land and seed preparation Crop maintenance Crop rotation Biofertilizers Role and Benefits of Biofertilizers Different types of Biofertilizers Rhizobium(b) Azotobacter(c)Azospirillum(d) Cyanobacteria (e) Azolla(f) Mycorrhiza 5.2.3 Culture preparation and Methods of application Green manure Compost and Vermicompost Principles and Methods

(15 Hours)

Benefits Bio-pesticides Types of Biopesticides Bacteria, (b)Fungi and (c) Virus Benefits Integrated farming Definition Scope and concepts Importance

TOPICS FOR SELF-STUDY:

S. no	Topics for Self- Study	References
1	Drought resistance by Engineering Plant – Tissue specific response	https://www.frontiersin.org/articles/10.3389/fpls.2019.01676/full
2	Plant adaptation to drought stress	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937719/
3	Host resistance	https://www.sciencedirect.com/topics/agricultural-and-biological- sciences/host-resistance
4	Recent trends in Agriculture: Vertical Farming and Organic Farming	https://medcraveonline.com/APAR/recent-trends-in-agriculture-vertical- farming-and-organic-farming.html
5	Integrated Pest Management in Practice	https://www.sciencedirect.com/science/article/abs/pii/S0261219499000988

6	Impact of Pesticides use in Agriculture	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2984095/
7	Pesticide productivity and food security	https://link.springer.com/article/10.1007/s13593-012-0105-x

TEXT BOOKS:

Plant Breeding:

1. Chaudhary, R. C. *Introduction to Plant Breeding*. Oxford IBH Publishing Co., (P) Ltd., New Delhi, 1991.

2. Ghahal, G. S. and Gosal, S. S. *Principles and procedures of Plant Breeding*. Narosa Publishing House, 2002.

3. Singh, B. D. 1996. Plant Breeding: Principles and methods. Kalyani Publications , 1996.

4. Singh, B. D. Plant Breeding: Principles and Methods, Kalyani Publishers, 2006.

Plant Pathology:

1.Mehrotra R.S., and Askok Agarwall. 2008. *Plant pathology*, Tata McGrew Hill Education Pvt., Ltd., New Delhi, India.

Plant Protection:

1. 1. Bugdol, M. and Jedynak, P. 2015. *Integrated Management Systems*. Springer International Publishing, Switzerland.

2. 4. Lee, T.H., Shiba, S. and Wood, R. C. 1999. *Integrated Management Systems: A Practical Approach to Transforming Organizations*. John Wiley & Sons, Inc., India.

3. Maheshwari, D.K. 2014. Composting for Sustainable Agriculture. Springer International

Publishing, Switzerland.

Reference Books:

Plant Breeding:

1. Acquaah, G. Principles of Plant Genetics and Breeding. Blackwell Publishing, USA, 2007.

2. Agarwal, R. I. Fundamentals of Plant Breeding and Hybrid Seed Production. Oxford IBH

Publications, New Delhi, 1998.

3. Allard, R. W. Principles of Plant breeding. John Wiley Publications, N.Y, 1999.

4. Baudai, M. M. Practical Plant Breeding. Oxford IBH Publication, New Delhi, 1974.

5. Chopra, V. I. *Plant breeding* – Theory and Practice, (2nd Edn.) Oxford IBH Publishing Co., (P) Ltd., New Delhi, 1998.

6. Sharma, J. R. Principles and practices of Plant Breeding. Tata McGraw-Hill Publishers

Company Ltd, 1994.

Organic Farming:

1. Palaniappan, S.P. and Annadurai, K. 2012. Organic Farming – Theory and Practice.

Scientific Publishers, India.

HORTICULTURE

1. Edmond Musser and Andres. Fundamentals of Horticulture. McGraw Hill Book Co., New York. 1974.

2. Randhawa.Ornamental Horticulture in India. Today and Tomorrow Publishers. New Delhi, India.1978.

3. Naik. South Indian Fruits and their culture.Varadhachary and Co., Madras, Tamil Nadu, India. 1963.

PLANT PROTECTION

1. Chatterjee, P.B. Plant Protection Techniques. BharathiBhawan, Patna, India, 1997.

2. Chattopadhya, S.B. *Principles and Procedures of Plant Protection (3rd Ed.,)*. Oxford and IBII Publishing Co. (P) Ltd., New Delhi, India. 1989.

3. Joshi, N.C. Plant Protection in India. Allied Publishers Ltd., New Delhi, India, 1992.

Web links:

https://www.wur.nl/en/show/Online-course-Plant-Breeding.htm

https://www.plantbreeding.org/content/online-resources-for-plant-breeding-education

http://ecoursesonline.iasri.res.in/course/view.php?id=134

SPECIFIC LEARNING OUTCOME(SLO):

Unit	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
Ι	Pla	nt Breeding	
1.1	Introduction to Plant Breeding - History, Objective, Importance	Recall the history of Genetics	K1
1.2	Plant Domestication Concepts of Domestication, Center of Origin of Species – N. Vavilov	List the Centre of Origin of Species	K1
1.3	Basic principles of Selection Methods Mass selection, Pure line selection, Clonal Selection	Classify the kinds of Selection methods Compare the principles of selection methods.	K4 K4
1.4	Hybridization Objectives, Hybridization Procedure – (a) Choice of Parents (b) Emasculation (c) Bagging and Labelling (d) Harvesting and Raising F1 generation	Illustrate Multiple Alleles in Human traits.	K2
1.5	Heterosis Definition, Genetic causes of heterosis (a) Dominance theory (b) Over dominance theory, Physiological causes of heterosis, Effects of heterosis.	Classify the genetic causes of Heterosis. Discuss the Physiological causes of Heterosis.	K4 K6
II	BREED	ING METHODS	1
	Mutation Breeding Definition -Mutation and Mutagenesis, Types of Mutation – (a) Spontaneous (b) Induction –	Classify the types of Mutation	K4

2.1	Physical and Chemical, Application and Limitation,	Distinguish the Spontaneous and Induced Mutation	KA
	Achievements.		κ4
2.2	Polyploidy in breeding Types of Polyploidy (a) Aneuploidy (b) Euploidy (c) Autopolyploidy (d) Allopolyploidy, Application, Achievements	Recall the kinds of Polyploidy	K1
2.3	Breeding for disease resistance Disease escape, Disease resistance – Vertical and Horizontal, Mechanism of Disease resistance – (a) Mechanical (b) Hypersensitivity (c) Antibiosis (d) Nutritional, Achievements	Examine the mechanism of disease resistance	K4
2.4	Breeding for Drought tolerance Mechanisms of Drought resistance (a) Drought escape (b) Drought avoidance (c) Drought tolerance (d) Drought resistance, Achievements in Drought tolerance	Explain the mechanism of drought resistance	K5
2.5	Plant breeding achievements in India Plant breeding achievement in India with reference to Rice, Wheat, Sugarcane	Justify the Plant breeding achievement in India with reference to Economically important crops.	К5
III	PLANI	PATHOLOGY	
3.1	Plant Pathology- Definition	Recall the definition of Plant Pathology	K1

3.2	Classification of Plant diseases	Classify the Kinds of Plant diseases with suitable illustration	K4
3.3	Study of the following diseases with reference to causal agents, symptoms, preventions and control methods Little Leaf of Brinjal, Tobacco Mosaic Virus Citrus canker Red rot of Sugarcane	Outline the Causal agent, Symptom, preventive and control methods of Plant diseases	K2
IV	PLANT	PROTECTION	
4.1.	Principles of Plant Protection	Explain the principle of Plant protection	K2
4.2.	Methods of Plant Protection-	• Explain the methods of Plant protection	K2
	Prevention, Control, Eradication		
4.3.	Methods of Control Cultural Practices, Quarantine methods,	Distinguish the varies methods of cultural practices Evaluate the Plant Quarantine methods	K4 K5
4.4.	Methods of application of Fungicides and Pesticides Sprayers, Dusters	Distinguish between Sprayer and Duster Demonstrate the working mechanism of Sprayer	K4 K2
4.5.	Integrated Pest Management Definition, Concepts and Principles, Approaches, Advantages	Explain the concepts and Principles of IPM	K5

		List out the advantages of IPM	K1
4.6	Seed Treatment Methods of seed treatment (a) Hot water (b) Dry heat (c) Aerated heat (d) Radiation, Chemical and Biological treatment	Classify the methods of seed treatment Examine the chemical and biological method of seed treatment	K4 K4
4.7	Soil Treatment Soil treatment, Sterilization (a) Heating, (b) Fumigation	Compare the Heating and Fumigation method	K2
V	ORGA	NIC FARMING	
5.1	Organic Farming Concepts and Importance, Land and seed preparation, Crop Importance, Crop rotation,	Examine the importance of crop rotation	K2
5.2.	Biofertilizers Role and Benefits of Biofertilizers, Different types of Biofertilizers (a) Rhizobium (b) Azotobacter (c) Azospirillum (d) Cyanobacteria (e) Azolla (f) Mycorrhiza, Culture preparation and methods of application	Classify the various kinds of Microbial biofertilizers Determine the culture preparation and methods of application of Microbial fertilizers	K2 K5
5.3.	Green Manure Compost and Vermicompost, Principles and Methods, Benefits	Defend that vermicompost enhances the soil fertility	K3
5.4.	Bio-pesticides Types of Biopesticides (a) Bacteria, (b) Fungi and (c) Virus, Benefits	Explain different types of Biopesticides	K5

5.5.	Integrated Farming	Discuss the importance of	K6
	Definition, Scope and concepts, Importance	Integrated Farming	

Mapping Scheme for Course Code: U16BY6:1

U16BY6:1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Н	-	L	L	-	-	Н	Н	Н	L	-	L	-
CO2	Η	-	Μ	L	Н	L	L	Η	Н	L	-	-	-
CO3	H	-	Μ	Η	L	L	L	H	Н	Η	-	L	-
CO4	H	L	Μ	Μ	H	L	L	Μ	Μ	Η	L	-	-
CO5	H	Μ	Η	Μ	H	Μ	L	H	Н	Η	L	L	L
CO6	H	L	H	Η	Μ	L	Η	H	Η	Η	L	L	L

Course Assessment Methods:

1.Continuous Assessment by conducting Class test, Group Discussion and Quiz.

2. Assessment also done through Seminar Presentation, submission of Assignments and Model Making and Model exams.

3. End Semester Examination.

Elective III: MOLECULAR BIOLOGY AND PLANT BIOTECHNOLOGY

Semester: VI

Course Code: U16BY6:2

Credits: 5

Hours/Week:5

Course Outcomes:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Analyze the applications of plant biotechnology	K4	Ι

CO 2	Determine various aspects of tissue culture and their applications	K5	II
CO 3	Explain plant biotechnological applications viz., Algal and transgenic crops	K5	III
CO 4	Apply the concepts of Biotechnology in Environmental Management.	K3	IV
CO 5	Analyze the reasons for pollution and choose the method of pollution management.	K5	IV
CO 6	Discuss Ethical Issues, intellectual property management and handling of GMOs.	K6	V

Syllabus:

Unit I: BASIC CONCEPT OF MOLECULAR BIOLOGY

1.1. Denaturation and Renaturation

1.2. DNA replication

1.2.1. Basic requirements

1.2.2. Semi-conservative method- Proof for semi-conservative - Meselson and Stahl's Experiment 1.2.3. Rolling circle mechanism

1.2.4. Theta replication 1.3. Semi-discontinuous replications

1.3.1. Unwinding of double helix, RNA primer formation

1.3.2. DNA polymerase in prokaryotes and eukaryotes DNA polymerase I,II,III, Topoisomerase, SSB Protein

1.3.4. Leading strand synthesis, Lagging strand synthesis, Okazaki fragments

1.3.5. Origin of replication - Replicon and replication fork

Unit: II- GENE EXPRESSION

2.0. Central dogmaof molecular biology

2.1. Prokaryotictranscription a) RNA Polymerase in prokaryotes (b) Transcription unit (c) recognition of promoter region (d) Initiation of polynucleotide chain (e) Elongation of RNA polynucleotide (f) Termination of transcription

2.2. Eukaryotic transcription

2.2.1. Eukaryotic RNA Polymerases - RNA Polymerase I,II and III

2.2.2. Transcription factors and Promoters, Post Transcription modifications

2.2.3. RNA capping, Poly A tailing, Intron splicing

2.3. Translation in Prokaryotes - Initiation, Elongation, Termination

2.4. Translation in Eukaryotes – Initiation, Elongation, Termination

2.4.1. Post Translation modifications - Protein folding, Biochemical modification

UNIT III: METHODS OF GENETIC ENGINEERING

3.0. Restriction endonucleases, Prokaryotic and eukaryotic cloning vectors, Genomic and c-DNA libraries

3.1. Gene cloning strategies - Screening of recombinants, Expression of cloned genes

3.2. Methods of Gene transfer - Agrobacterium mediated, Direct DNA transfer (I)Micro injection (II) Electroporation (III) Biolistics

Unit IV: APPLICATIONS OF MOLECULAR BIOLOGY

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

4.0. Nucleic acid hybridization 4.1 Blotting techniques - Southern, Northern, Western blotting

44 4.2 PCR – Principle, Techniques and Applications.

4.3 RFLP - Principle, Techniques, Applications, Advantages and Disadvantages

4.4 RAPD – Principle, Techniques, Applications, Advantages and Disadvantages

4.5 DNA Finger Printing

Unit V: PLANT TISSUE CULTURE

5.0 Laboratory requirements of plant tissue culture

5.1 Preparation of Culture media -(a) Natural medium - Coconut milk (b) Synthetic medium -

White medium and MS medium

- 5.2 Sterilization– Techniques.
- 5.3 Plant tissue culture techniques- Direct and Indirect.
- 5.4 Somatic embryogenesis
- 5.5 Production of synthetic seeds
- 5.6 Somoclonal variations

5.7 Protoplast isolation – Mechanical, Enzymatic

5.8 Protoplast fusion - Physical, Chemical and Advantages

5.9. GM foods - Varieties of GM foods, Advantages, Disadvantage

	Topics to i sen-study.						
SI.	Topics	Reference Book/Web Links					
No.							
1.	GURT	https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.12084					
2.	Bt-GM crops	https://ejbpc.springeropen.com/articles/10.1186/s41938-018-0051-2					
		Chopra, V. L. and Nasim, A. 1990. Genetic engineering and					
		Biotechnology. Concepts, Methods and Application. (4th Ed.). Oxford					
		and IBH Publication.					
3.	Microbes as a tool	https://www.sciencedirect.com/topics/medicine-and-					
	in biowar	dentistry/biological-warfare					
		https://www.britannica.com/technology/biological-weapon					
4.	Impact of	https://cban.ca/gmos/issues/terminator-technology/					
	terminator seeds on	https://www.sites.ext.vt.edu/newsletter-archive/cses/1999-02/1999-					
	Agriculture	<u>02-03.html</u>					

Topics for Self-Study:

TEXT BOOKS:

1. Chawla, H.S. 2002. *Introduction to plant biotechnology*, second edition, Oxford & IBH Publishing, Co,Pvt. Ltd., New Delhi.

2. Jwala Aggarwal and Shekhar K. Arora. 2014. *Experiments in Plant Tissue Culture*. Campus Book International, New Delhi.

3. Dubey. R.C. 2006. *A text book of Biotechnology*. S. Chand and Company ltd. Ramnagar New Delhi.

(15 Hours)

4. Rittmann, B.E. and McCarty, P.L. 2001. *Environmental Biotechnology: Principles and Applications*, McGraw-Hill.

REFERENCE BOOKS:

1. Razdan, M.K. 2003. *Introduction to Plant Tissue Culture*, Second edition. Oxford and IBH publishing, New Delhi.

2. Thara, K.M. 2009. *Practical Manual series-4. Biotechnology*, New India Publishing Agency, New Delhi.

3. Bhojwani, S. S. and Razdan. M. K. 1996. *Plant Tissue Culture*: Theory and Practice, a revised edition. Elsevier Science, Netherlands.

Web Links:

https://www.classcentral.com/course/swayam-principles-of-biotechnology-17738 https://onlinecourses.swayam2.ac.in/cec20_bt07/preview SPECIFIC LEARNING OUTCOMES (SLO):

Unit/ Secti on	CONTENT	LEARNING OUTCOME	Highest Bloom taxonomi c level of transacti on
I-	BASIC CONCEPT	OF MOLECULAR BIOLOGY	
1.1	1.1. Denaturation and Renaturation	 Recognize the importance and scope Appraise the application of plant bistochargherer 	K2 K4
		 Develop interest in micropropagating plants 	К3
1.2	1.2. DNA replication	 Identify suitable explants and medium for <i>In vitro</i> Propagation 	К3
1.3	1.2.1. Basic requirements	 Plan the protocol for micropropagation Plan Micropropagation experiments 	К3
1.4	1.2.2. Semi-conservative method- Proof for semi-conservative - Meselson and Stahl's Experiment	 Define biotechnological techniques involved in breeding plants 	K1
	1.2.3. Rolling circle mechanism	• Explain the mechanisms	K5

	1.2.4. Theta replication	• Analyse the methods	K4
	1.3. Semi-discontinuous replications	• Define the multiplications	K2
	1.3.1. Unwinding of double helix, RNA primer formation	• Explain the DNA replication	K2
	1.3.2. DNA polymerase in prokaryotes and eukaryotes DNA polymerase I,II,III, Topoisomerase, SSB Protein	• Explain the enzymes	K2
	1.3.4. Leading strand synthesis, Lagging strand synthesis, Okazaki fragments	 Analyse the multiplication process 	K4
II	GENET	TC ENGINEERING	
2.1	2.0. Central dogmaof molecular biology	• Summarize the application techniques in Genetic Engineering	K2
2.2	2.1. Prokaryotictranscription a) RNA Polymerase in prokaryotes (b) Transcription unit (c) recognition of promoter region (d) Initiation of polynucleotide chain (e) Elongation of RNA polynucleotide (f) Termination of transcription	• Apply the knowledge gained from Genetic Engineering in Crop plants	К3
2.3	2.2. Eukaryotic transcription	• Identify the suitable vectors for expression of genes	K3
2.4	2.2.1. Eukaryotic RNA Polymerases - RNA Polymerase I,II and III	 Determine biotechnological techniques involved in breeding plants 	K5
III	METHODS OF	GENETIC ENGINEERING	
3.1	3.0. Restriction endonucleases, Prokaryotic and eukaryotic cloning vectors, Genomic and c-DNA libraries	•Demonstrate understanding of fundamental concepts of natural resource	K2
3.2	3.1. Gene cloning strategies - Screening of recombinants, Expression of cloned genes	• Explain the role of Renewable and non renewable energy resources and types of biomass.	K5

3.3	3.2. Methods of Gene transfer - Agrobacterium mediated, Direct DNA transfer (I)Micro injection (II) Electroporation (III) Biolistics	• Identify Bioremediation and Restoration of Environment	К3
3.4	3.0. Restriction endonucleases, Prokaryotic and eukaryotic cloning vectors, Genomic and c-DNA libraries	• Explain the various bioremediation process	K2
3.5	3.1. Gene cloning strategies - Screening of recombinants, Expression of cloned genes	• Explain the various concept of Bioremediation	K2
IV	BIOMEDICAL APPLI	CATIONS OF BIOTECHNOLOGY	
4.1	Biotechnological applications in health care, (1) Molecular diagnosis – monoclonal antibodies, DNA probes, Microarrays, DNA finger printing, Gene therapy, Antisense Technology	• Analyze the use of Biotechnological aspects in clinical field.	К5
V	BIOTECHNO	LOGY AND BIOSAFETY	
5.1	Biotechnology Act- regulatory agencies -	• Discuss the Social and ethical issues of bio safety	K6
5.2	Biosafety for human health and environment. Social and ethical issues of biosafety- Use of genetically modified organisms (BT cotton and BT brinjal) and their release into the environment. Ethical issues of Synthetic biology and nanobiotechnology	• Discuss the ethical issues of synthetic biology	K6
5.3	Intellectual property rights (IPR),	• Explain the importance of IPR	K2

Mapping Scheme for Course Code: U16BY6:2

U16BY6:2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3	PSO4
CO1	Η	L	Μ	L	Μ	L	-	-	-	Η	Μ	-	L
CO2	Μ	-	-	Μ	Н	Н	-	Η	Н	Η	Η	L	Μ
CO3	L	Μ	H	Μ	H	Μ	-	H	H	Η		L	Μ

CO4	Η	Μ	Η	-	L	Η	-	Μ	L	Η	Μ	-	-
CO5	Η	Η	L	-	-	Μ	L	L	Μ	Μ	L	L	-
CO6	Η	Μ	L	-	L	Μ	L	Η	Η	L	Μ	-	-

L-Low (1) M-Medium (2) H-High (3)

COURSE ASSESSMENT METHODS:

Direct

Continuous Assessment in assignments, record submission. Class tests, Model Exams. End Semester Examination

Indirect

1. Course-end survey

SBEC II – MOLECULAR AND PLANT TISSUE CULTURE TECHNIQUESCourse Code: U16BYPS2Semester: VICredits: 2Hours/Week: 2

Course Outcome:

On completion of this course, the students will be able to:

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Build the concepts and criteria to design, organise, and maintenance of Plant Tissue Culture Laboratory	K6	Ι
CO 2	Comparing the gene transformation techniques using photographs and videos	K4	II
CO 3	Elaborating sterilization techniques, hands-on media preparation and monitoring the cultures	K6	IV

CO 4	Interpreting, analyzing, and validation of the bio-molecules (DNA and Protein) using the methods and protocols	K5	II
CO 5	Evaluating the direct and indirect methods for performing different micro propagation techniques	K5	III
CO 6	Propose a model of well equipped laboratory be able to develop Entrepreneurship skill with the prior knowledge of ethical values	K6	I - V

Syllabus:

Unit I- Introduction and Molecular BioLaboratory organization (6 Hours)

1.1 Molecular Biology- Definition and importance

1.2 Laboratory organization- Laboratory design- Laboratory requirements

(a) Instruments (b) Glass wares (c) Chemicals - Laboratory safety- (a) Handling of Chemicals
(b) Storage of Chemicals - Room Temperature - - Refrigerator - Deep Freezer (c) Personal safety (d) Disposal methods

Unit –II- Plant DNA Extraction and Quantification (

2.1 Plant DNA- Extraction- Separation - Agarose Gel Electrophoresis

2.2. Plant Protein- Extraction - Separation -SDS -PAGE

Unit- III - Genetic transformation techniques

3.1 Indirect DNA delivery- Ti plasmid - Agrobacterium-mediated transformation 3.2 Direct DNA delivery- Biolistics- Microinjection- Electroporation

Unit –IV- Plant Tissue Culture and Sterilization Techniques

4.1 Sterilization techniques concepts and performance- Glass wares - Cleaning and sterilization, Medium-(a) Preparation - Murashige and Skoog (b) Maintenance of pH (c) Sterilization.

4.2 Explant- Washing- Sterilization

4.3 Culture room- Fumigation- Laminar air flow chamber -(a) Cleaning(b) UV exposure

Unit-V- Micro propagation

5.1 Introduction to Plant tissue culture- Definition and importance- Micropropagation Techniques- Micropropagation- Direct - Indirect

5.2. Embryogenesis

5.3. Synthetic seed

5.4. Hardening

5.5. Field visit to Commercial Plant Tissue Culture Laboratory

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

TEXT BOOKS:

1. Rajini Sharma. 2000. Plant Tissue Culture, Campus books international, New Delhi,

2. Razdan, M.K. 2003. *Introduction to Plant Tissue Culture*, Second edition. Oxford and IBH publishing, New Delhi.

3. Thara, K.M. 2009. *Practical Manual series-4*. *Biotechnology*, New India Publishing Agency, New Delhi.

4. Bhojwani, S. S. and M. K. Razdan. 1996. *Plant Tissue Culture: Theory and Practice*, a revised edition. Elsevier Science, Netherlands.

5. Chawla, H.S. 2002. *Introduction to plant biotechnology,* second edition, Oxford & IBH Publishing, Co, Pvt. Ltd., New Delhi.

REFERENCE BOOKS:

1. Rajendra Reddy and Abhay Shankar, J.P. 2008. *Tissue Culture*. Commonwealth Publishers, NewDelhi.

2. Jwala Aggarwal and Shekhar K. Arora. 2014. *Experiments in Plant Tissue Culture*. Campus Book International, New Delhi.

Web Links:

https://onlinecourses.swayam2.ac.in/cec19_bt01/preview

https://adlonlinecourses.com/product/levels/professional-development/tissue-culture-100-hours-certificate-course/

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	Content	Learning Outcome	Highest Bloom taxonomic level of transaction
1	INTRODUCTION A	ND LABORATORY ORGAN	IZATION
1.1	Molecular Biology- Definition and importance	• Define the basic concepts and principles	К6

		• Discuss the importance of plant culturing.	
1.2	Laboratory Design and Requirements	 Develop core knowledge about laboratory setup Determine the ethics of safety measures 	К6
II	PLANT DNA EXT	RACTION AND QUANTIFIC	CATION
2.1	DNA Extraction and Separation by Agarose Gel Electrophoresis	 Make use of suitable technique in the separation of DNA Explain the quality 	K3 K5
2.2	Protein Extraction and	 and quantity of DNA Make use of suitable technique in the separation of Protein 	K3
2.2	Separation by SDS-PAGE	Asses the quality and quantity of Protein	K4
III	GENETIC TRANSFORM	IATION TECHNIQUES – PH /IDEO PRESENTATION	OTOGRAPHS
3.1	DNA transformation by indirect methods (Ti Plasmid and Agrobacterium-mediated transformation)	 Distinguish between DNA transformation indirect methods Model of genetic elements present on the Ti plasmid Relate the concepts of <i>Agrobacterium</i> mode of gene transfer in transformation 	K4
3.2	DNA transformation by direct methods (Biolistics, Microinjection and Electroporation)	 Compare and contrast the process of DNA transformation using direct methods Distinguish between the principles of microinjection, electroporation and biolistic gun in DNA 	K4

IV	PLANT TISSUE CULTU	RE AN	D STERILIZATION 7	TECHNIQUES
4.1	Sterilization and Media Preparation	•	Choose suitable sterilization methods glassware and media Influence of micro-, macro-nutrients and plant growth regulators Discuss about key components of media	K6
4.2	Explants preparation	•	Assess the knowledge of choosing and using specific explants	K5
4.3	Culture room set-up and Laminar Air Flow maintenance	•	Determine fumigation methods Make use of skills in working in Laminar Air Flow	К5
V	MI	CROPR	ROPAGATION	
5.1	Micropropagation of explants by direct and indirect methods	•	Outline the procedure of <i>in-vitro</i> culturing the explants Assess the suitable methods for propagating plants Interpret, troubleshoot and standardize the protocols	К5
5.2	Embryogenesis	•	Examine the stages of embryo development	K4
5.3	Synthetic seed	•	Develop procedures for synthetic seeds Select suitable methods for production of synthetic seeds	К3
5.4	Hardening	•	Outline the procedure of <i>in-vivo</i> conditions	K2

		for growing the explants	
5.5	Field Visit	 Perceive novel ideas of gardens. Planning and designing of lab Relate with commercial aspects of micro propagation 	K5

Mapping Scheme for Course Code: U16BYPS2

U16BYPS2	PO	PSO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	М	-	-	М	-	-	Н	М	Н	L	-	L	L
CO2	М	-	-	М	-	-	М	L	L	-	-	-	-
CO3	М	L	L	Н	-	L	Н	Μ	Μ	М	-	L	Η
CO4	Н	Μ	М	М	-	-	Н	L	М	-	Η	-	-
CO5	М	L	-	Н	-	-	М	L	L	-	-	-	-
CO6	H	M	L	H	-	L	Η	L	L	-	-	М	-

Assessment/Evaluation:

- 1. Class test, assignments
- 2. End semester exams.

SBEC III – PLANT WEALTH FOR HUMAN WELFARESemester: VICourse Code : U16BYPS3Credits: 2Hours/Week : 2

On completion of the course, the students will be able to;

SYLLABUS:

Unit I : Flowers

(6 Hours)

- 1.1. Bouquet
- 1.2. Garlands and Strings
- 1.3. Regular and festival decorations
- 1.4. Hair designs

Unit II : Vegetables and Fruits

- 2.1 Pickle (Lime / Mango / Ginger)
- 2.2. Juice (Lemon / Sweet lime)/ squash (Graph / Orange)
- 2.3. Drying (Direct & treated)
- 2.4. Vegetable, pith and grain carving

Unit III: Fibers

- 3.1 Baskets and pans
- 3.2. Ropes and chords
- 3.3. Brushes and brooms
- 3.4 . Mats and Carpets

Unit IV: Cosmetics and Medicines

- 4.1. Medicinal oils / Application Hair oils
- 4.2. Preparation of Decoctions Syrups

4.3. Herbal Remedies – Ointments, Pain balms

No	COURSE OUTCOME (CO)	Level	Unit
CO 1	Construct new patterns of designs in making Bouquets, garlands and hair designs.	K6	Ι
CO 2	Make use of techniques of Pickle and beverage preparation	K3	II
CO 3	Explain the protocols of making products by using plant fibers.	K2	III
CO 4	Evaluating the application of Medicinal plants in the preparation of Cosmetics, face packs and Herbal products.	K5	IV
CO 5	Create a wealthy product from the Phyto-wastes.	K6	V
CO 6	Develop Entrepreneurship skill by knowing the Aesthetic value, Medicinal value and Commercial value of Plant & its resources.	K6	I - V

4.4. Cosmetics, Face packs & Skin care

Unit V : Phytowastes to wealth

(6 Hours)

- 5.1. Shells and rinds (Useful and ornamental articles)
- 5.2. Waste/used papers and wood (recycling)
- 5.3. Leaves (cups and plates)
- 5.4 Phytojewellery (ear drops, studs, bangles / necklace)

(Details about the cultivation / procuring, processing uses and sales of these based on the availability will be dealt with the support of the field experts and field visits)

REFERENCES

(6 Hours)

(6 Hours)

(6 Hours)

1. Pandey, B.P. 2007. Economic botany. S. Chand and Co. New Delhi.

2. Samba Murty, A.V.S., Subramaniyan, N.S. 1989. *A Text book of economic botany*. Wiley Eastern Ltd. New Delhi,.

3. Siddappa, G.S. and Tandon, G.L. 1998. *Preservation of fruits and vegetables*. ICAR, New Delhi,

WEB LINK:

https://www.theindianwire.com/education/swayam-post-graduate-college-students-completecourse-details-25307/

SPECIFIC LEARNING OUTCOME (SLO):

Unit/ Section	Content	Learning Outcome	Highest Bloom taxonomic level of transaction								
Ι	Flowers										
1.1	Bouquet	• Develop the skills of making bouquet	K6								
1.2	Garlands and Strings	• Compile various hands on techniques to make the Garlands and floral strings	К6								
1.3	Regular and festival decorations	• Create decorative products	K6								
1.4	Hair designs	 Make up various hair designs by using plant products 	K6								
II	V	egetables and Fruits									
2.1	Pickle (Lime/Mango/Ginger)	• Demonstrate the pickle preparation	K2								
2.2	Juice (Lemon/Sweet Lime) / Squash (Grape/Orange)	• Adapt a suitable preservation method in the preparation of squash/juice	К6								
2.3	Drying (Directed & Treated)	• List the drying methods	K1								
2.4	Vegetable, pith and grain carving	• Examine the carving techniques	K4								
III	Fibers										
3.1	Baskets and Pans	• Outline the procedure in the preparation of Baskets	K2								

		and Pans									
3.2	Ropes and Chords	• Modify the process of Rope and Chord making.	K6								
3.3	Brushes and Brooms	K4									
3.4	Mats and Carpets	• Demonstrate the Mat and Carpet making	K2								
IV	Cos										
4.1	Medicinal oils / Application – Hair Oil	К3									
4.2	Preparation of Decoctions- Syrups	• formulate the Medicinal Plants in the preparation of Decoction	К6								
4.3	Herbal Remedies – Ointments, Pain balms	• Analyse the formulations in the preparation of Ointments and Pain balms	K4								
4.4	Cosmetics, Face Packs & Skin Care	• Make use of the Plant resources in the preparation of Cosmetics and Face Packs	К3								
V	Phyto-wastes to wealth										
5.1	Shells and rinds (Useful and Ornamental articles)	• Make use of the Phyto wastes such as Shells and rinds for the production of commercial products.	К3								
5.2	Waste/used papers and wood (recycling)	• Demonstrate the Process of making Paper cups.	K2								
5.3	Leaves (Cups and Plates)	• Construct leaf cups and Palm plates by using Phyto-wastes	K6								
5.4	Phyto jewellery (ear drops, studs, bangles/necklace)	 Make use of the Phyto waste in the making of Phyto Jewels preparation. 	К3								

Mapping Scheme for the Course Code: U16BYPS3

U16BYP	PO	PSO	PSO	PSO	PSO								
S3	1	2	3	4	5	6	7	8	9	1	2	3	4
CO1	Μ	Μ	L	-	-	-	Η	L	L	-	-	-	-
CO2	М	М	L	-	-	-	Η	L	L	-	-	-	-

CO3	L	Μ	L	-	-	-	Η	L	L	-	-	-	-
CO4	Η	М	Н	-	L	L	Н	L	Μ	-	Н	-	-
CO5	М	М	Н	-	-	-	Н	L	L	-	-	-	-
CO6	Н	Μ	L	-	-	L	Η	L	L	-	-	-	-

Assessment / Evaluation:

1. Continuous Assessment by conducting Model Exams, Demonstration Experiment, Written test on Protocols.

2. Assessment also done through Lab Attendance and Practical Record work.

3. End Semester Practical Examination